C. Pacha, K. Arnim, F. Bauer, T. Schulz, W. Xiong, K. T. San, A. Marshall, T. Baumann, C. Cleavelin, K. Schruefer, J. Berthold
{"title":"Efficiency of low-power design techniques in multi-gate FET CMOS circuits","authors":"C. Pacha, K. Arnim, F. Bauer, T. Schulz, W. Xiong, K. T. San, A. Marshall, T. Baumann, C. Cleavelin, K. Schruefer, J. Berthold","doi":"10.1109/esscirc.2007.4430258","DOIUrl":null,"url":null,"abstract":"Energy dissipation, performance, and voltage scaling of multi-gate FET (MuGFET) based CMOS circuits are analyzed using product-representative test circuits composed of 10k devices. The circuits are fabricated in a low power MuGFET CMOS technology, achieve clock frequencies of 370-500MHz at VDD=1.2V, and operate down to the subthreshold region. Voltage scalability of MuGFET circuits is superior to sub-100 nm planar CMOS circuits due to excellent short-channel effect control.","PeriodicalId":103959,"journal":{"name":"ESSDERC 2007 - 37th European Solid State Device Research Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSDERC 2007 - 37th European Solid State Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/esscirc.2007.4430258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Energy dissipation, performance, and voltage scaling of multi-gate FET (MuGFET) based CMOS circuits are analyzed using product-representative test circuits composed of 10k devices. The circuits are fabricated in a low power MuGFET CMOS technology, achieve clock frequencies of 370-500MHz at VDD=1.2V, and operate down to the subthreshold region. Voltage scalability of MuGFET circuits is superior to sub-100 nm planar CMOS circuits due to excellent short-channel effect control.