GeoXTag: Relative Spatial Information Extraction and Tagging of Unstructured Text

Mehtab Alam Syed, E. Arsevska, M. Roche, M. Teisseire
{"title":"GeoXTag: Relative Spatial Information Extraction and Tagging of Unstructured Text","authors":"Mehtab Alam Syed, E. Arsevska, M. Roche, M. Teisseire","doi":"10.5194/agile-giss-3-16-2022","DOIUrl":null,"url":null,"abstract":"Abstract. Spatial information has gained more attention in natural language processing tasks in different interdisciplinary domains. Moreover, the spatial information is available in two forms: Absolute Spatial Information (ASI) e.g., Paris, London, and Germany and Relative Spatial Information (RSI) e.g., south of Paris, north Madrid and 80 km from Rome. Therefore, it is challenging to extract RSI from textual data and compute its geotagging. This paper presents two strategies and the associated prototypes to address the following tasks: 1) extraction of relative spatial information from textual data and 2) geotagging of this relative spatial information. Experiments show promising results for RSI extraction and tagging.\n","PeriodicalId":116168,"journal":{"name":"AGILE: GIScience Series","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGILE: GIScience Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/agile-giss-3-16-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract. Spatial information has gained more attention in natural language processing tasks in different interdisciplinary domains. Moreover, the spatial information is available in two forms: Absolute Spatial Information (ASI) e.g., Paris, London, and Germany and Relative Spatial Information (RSI) e.g., south of Paris, north Madrid and 80 km from Rome. Therefore, it is challenging to extract RSI from textual data and compute its geotagging. This paper presents two strategies and the associated prototypes to address the following tasks: 1) extraction of relative spatial information from textual data and 2) geotagging of this relative spatial information. Experiments show promising results for RSI extraction and tagging.
非结构化文本的相对空间信息提取与标注
摘要空间信息在自然语言处理任务中受到越来越多的关注。此外,空间信息有两种形式:绝对空间信息(ASI),如巴黎、伦敦和德国;相对空间信息(RSI),如巴黎南部、马德里北部和距离罗马80公里。因此,从文本数据中提取RSI并计算其地理标记是一个挑战。本文提出了两种策略和相关的原型来解决以下任务:1)从文本数据中提取相对空间信息;2)对这些相对空间信息进行地理标记。实验结果表明,RSI的提取和标记具有良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信