Aibin Yan, Yu Chen, Shukai Song, Zijie Zhai, Jie Cui, Zhengfeng Huang, P. Girard, X. Wen
{"title":"Sextuple Cross-Coupled-DICE Based Double-Node-Upset Recoverable and Low-Delay Flip-Flop for Aerospace Applications","authors":"Aibin Yan, Yu Chen, Shukai Song, Zijie Zhai, Jie Cui, Zhengfeng Huang, P. Girard, X. Wen","doi":"10.1145/3526241.3530355","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel sextuple cross-coupled dual-interlocked-storage-cell (DICE) based double-node-upset (DNU) recoverable and low-delay flip-flop (FF), namely SCDRL-FF, for aerospace applications. The SCDRL-FF mainly consists of sextuple cross-coupled DICEs controlled by clock-gating. The use of clock-gating based DICEs significantly reduces the CLK-Q transmission delay of the SCDRL-FF. Through the redundant and interlocked clock-gating based DICEs, the SCDRL-FF can provide complete DNU recoverability. Simulation results demonstrate the DNU recoverability of the SCDRL-FF and a 65% delay reduction on average compared with the state-of-the-art hardened FFs. The low delay overhead makes the proposed SCDRL-FF effectively applicable to high-performance applications and the DNU recoverability makes the proposed SCDRL-FF also suitable for aerospace applications.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a novel sextuple cross-coupled dual-interlocked-storage-cell (DICE) based double-node-upset (DNU) recoverable and low-delay flip-flop (FF), namely SCDRL-FF, for aerospace applications. The SCDRL-FF mainly consists of sextuple cross-coupled DICEs controlled by clock-gating. The use of clock-gating based DICEs significantly reduces the CLK-Q transmission delay of the SCDRL-FF. Through the redundant and interlocked clock-gating based DICEs, the SCDRL-FF can provide complete DNU recoverability. Simulation results demonstrate the DNU recoverability of the SCDRL-FF and a 65% delay reduction on average compared with the state-of-the-art hardened FFs. The low delay overhead makes the proposed SCDRL-FF effectively applicable to high-performance applications and the DNU recoverability makes the proposed SCDRL-FF also suitable for aerospace applications.