Implementation of Back Propagation Neural Network with PCA for Face Recognition

M. Ahmed, Z. Abadin, Md Anwar Hossain, Md. Imran Hossain, Rabindra Maitree
{"title":"Implementation of Back Propagation Neural Network with PCA for Face Recognition","authors":"M. Ahmed, Z. Abadin, Md Anwar Hossain, Md. Imran Hossain, Rabindra Maitree","doi":"10.34257/GJCSTGVOL19IS3PG21","DOIUrl":null,"url":null,"abstract":"Face recognition is truly one of the demanding fields of biometric image processing system. Within this paper, we have implemented Back Propagation Neural Network for face recognition using MATLAB, where feature extraction and face identification system completely depend on Principal Component Analysis (PCA). Face images are multidimensional and variable data. Hence we cannot directly apply Back Propagation Neural Network to classify face without extracting the core area of face. So, the dimensionality of face image is reduced by the Principal Component Analysis algorithm then we have to explore unique feature for all stored database images called eigenfaces of eigenvectors. These unique features or eigenvectors are given as parallel input to the Back Propagation Neural Network (BPNN) for recognition of given test images. Here test image is taken from the integrated webcam which is applied to the BPNN trained network. The maximum output of the tested network gives the index of recognized face image. BPNN employing PCA is more robust and reliable than PCA based face recognition system.","PeriodicalId":340110,"journal":{"name":"Global journal of computer science and technology","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global journal of computer science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34257/GJCSTGVOL19IS3PG21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Face recognition is truly one of the demanding fields of biometric image processing system. Within this paper, we have implemented Back Propagation Neural Network for face recognition using MATLAB, where feature extraction and face identification system completely depend on Principal Component Analysis (PCA). Face images are multidimensional and variable data. Hence we cannot directly apply Back Propagation Neural Network to classify face without extracting the core area of face. So, the dimensionality of face image is reduced by the Principal Component Analysis algorithm then we have to explore unique feature for all stored database images called eigenfaces of eigenvectors. These unique features or eigenvectors are given as parallel input to the Back Propagation Neural Network (BPNN) for recognition of given test images. Here test image is taken from the integrated webcam which is applied to the BPNN trained network. The maximum output of the tested network gives the index of recognized face image. BPNN employing PCA is more robust and reliable than PCA based face recognition system.
基于PCA的反向传播神经网络在人脸识别中的实现
人脸识别确实是生物特征图像处理系统中要求较高的领域之一。在本文中,我们使用MATLAB实现了用于人脸识别的反向传播神经网络,其中特征提取和人脸识别系统完全依赖于主成分分析(PCA)。人脸图像是多维的、可变的数据。因此,如果不提取人脸的核心区域,就不能直接应用反向传播神经网络对人脸进行分类。因此,通过主成分分析算法降低人脸图像的维数,然后我们必须为所有存储的数据库图像探索唯一的特征,称为特征向量的特征面。这些独特的特征或特征向量作为并行输入给反向传播神经网络(BPNN),用于识别给定的测试图像。这里的测试图像取自集成的网络摄像头,并应用于bp神经网络训练后的网络。测试网络的最大输出给出了识别的人脸图像的索引。采用PCA的bp神经网络比基于PCA的人脸识别系统具有更强的鲁棒性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信