Image Saliency Detection via Multi-Feature and Manifold-Space Ranking

Xiaoli Li, Huaici Zhao, Yunpeng Liu
{"title":"Image Saliency Detection via Multi-Feature and Manifold-Space Ranking","authors":"Xiaoli Li, Huaici Zhao, Yunpeng Liu","doi":"10.1145/3449365.3449378","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an image saliency detection method by using multi-feature and manifold-space ranking. Basically, the proposed method extracts the color-histogram feature to obtain the fine information of the image, and the color-mean feature to obtain the coarse information respectively. To further improve the detection accuracy of the feature correlation between different image units, a manifold-space ranking method is used to calculate saliency values of image units to construct a saliency map on each feature-space. Specifically, we fuse the two saliency maps to obtain the final saliency map. Extensive experiments demonstrate that the proposed method not only outperforms the other methods, but also improves the accuracy and robustness of the saliency detection.","PeriodicalId":188200,"journal":{"name":"Proceedings of the 2021 3rd Asia Pacific Information Technology Conference","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 3rd Asia Pacific Information Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3449365.3449378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose an image saliency detection method by using multi-feature and manifold-space ranking. Basically, the proposed method extracts the color-histogram feature to obtain the fine information of the image, and the color-mean feature to obtain the coarse information respectively. To further improve the detection accuracy of the feature correlation between different image units, a manifold-space ranking method is used to calculate saliency values of image units to construct a saliency map on each feature-space. Specifically, we fuse the two saliency maps to obtain the final saliency map. Extensive experiments demonstrate that the proposed method not only outperforms the other methods, but also improves the accuracy and robustness of the saliency detection.
基于多特征和流形空间排序的图像显著性检测
本文提出了一种基于多特征和流形空间排序的图像显著性检测方法。该方法主要通过提取颜色直方图特征来获取图像的精细信息,提取颜色均值特征来获取图像的粗值信息。为了进一步提高不同图像单元之间特征相关性的检测精度,采用流形空间排序法计算图像单元的显著性值,在每个特征空间上构造显著性映射。具体来说,我们将两个显著性图融合以获得最终的显著性图。大量实验表明,该方法不仅优于其他方法,而且提高了显著性检测的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信