Cluster I/O with River: making the fast case common

Remzi H. Arpaci-Dusseau, Eric Anderson, N. Treuhaft, D. Culler, J. Hellerstein, D. Patterson, K. Yelick
{"title":"Cluster I/O with River: making the fast case common","authors":"Remzi H. Arpaci-Dusseau, Eric Anderson, N. Treuhaft, D. Culler, J. Hellerstein, D. Patterson, K. Yelick","doi":"10.1145/301816.301823","DOIUrl":null,"url":null,"abstract":"We introduce River, a data-flow programming environment and I/O substrate for clusters of computers. River is designed to provide maximum performance in the common case — even in the face of nonuniformities in hardware, software, and workload. River is based on two simple design features: a high-performance distributed queue, and a storage redundancy mechanism called graduated declustering. We have implemented a number of data-intensive applications on River, which validate our design with near-ideal performance in a variety of non-uniform performance scenarios.","PeriodicalId":442608,"journal":{"name":"Workshop on I/O in Parallel and Distributed Systems","volume":"268 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"214","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on I/O in Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/301816.301823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 214

Abstract

We introduce River, a data-flow programming environment and I/O substrate for clusters of computers. River is designed to provide maximum performance in the common case — even in the face of nonuniformities in hardware, software, and workload. River is based on two simple design features: a high-performance distributed queue, and a storage redundancy mechanism called graduated declustering. We have implemented a number of data-intensive applications on River, which validate our design with near-ideal performance in a variety of non-uniform performance scenarios.
使用River的集群I/O:使快速的情况变得普遍
我们介绍了River,一个数据流编程环境和用于计算机集群的I/O基板。River旨在在常见情况下提供最大的性能——即使在硬件、软件和工作负载不一致的情况下也是如此。River基于两个简单的设计特性:一个高性能的分布式队列和一个被称为分级集群的存储冗余机制。我们已经在River上实现了许多数据密集型应用程序,这些应用程序在各种不统一的性能场景中以近乎理想的性能验证了我们的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信