Setting strategy of a SVM regressor for locating single phase faults in power distribution systems

E. Correa-Tapasco, S. Pérez-Londoño, J. Mora-Flórez
{"title":"Setting strategy of a SVM regressor for locating single phase faults in power distribution systems","authors":"E. Correa-Tapasco, S. Pérez-Londoño, J. Mora-Flórez","doi":"10.1109/TDC-LA.2010.5762976","DOIUrl":null,"url":null,"abstract":"In this paper, a regression technique as the support vector machines (SVM) configured using an optimization technique as the Chu Beasley Genetic Algorithm (CBGA) is proposed to develop a fault location method. As result, a strategy is proposed to relate a set of descriptors obtained from single end measurements of voltage and current (input), to the fault location (output), in a classical regression task. The developed strategy is tested in the selection of the best calibration parameters of a single phase SVM based fault locator where an average error of 5.278% is then obtained. According to the results, the proposed methodology could be applied successfully in power distribution systems.","PeriodicalId":222318,"journal":{"name":"2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC-LA.2010.5762976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a regression technique as the support vector machines (SVM) configured using an optimization technique as the Chu Beasley Genetic Algorithm (CBGA) is proposed to develop a fault location method. As result, a strategy is proposed to relate a set of descriptors obtained from single end measurements of voltage and current (input), to the fault location (output), in a classical regression task. The developed strategy is tested in the selection of the best calibration parameters of a single phase SVM based fault locator where an average error of 5.278% is then obtained. According to the results, the proposed methodology could be applied successfully in power distribution systems.
配电系统单相故障定位的SVM回归量设置策略
本文提出了一种基于回归技术的支持向量机(SVM)与基于Chu Beasley遗传算法(CBGA)的优化技术相结合的故障定位方法。因此,在经典回归任务中,提出了一种将电压和电流单端测量(输入)获得的一组描述符与故障定位(输出)相关联的策略。将该方法应用于基于单相支持向量机的故障定位器的最佳标定参数选择中,平均误差为5.278%。结果表明,该方法可以成功地应用于配电系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信