S. Tiwari, A. Krishnamoorthy, P. Rajak, Putt Sakdhnagool, Manaschai Kunaseth, F. Shimojo, S. Fukushima, A. Nakano, Ye Luo, R. Kalia, K. Nomura, P. Vashishta
{"title":"Quantum Dynamics at Scale: Ultrafast Control of Emergent Functional Materials","authors":"S. Tiwari, A. Krishnamoorthy, P. Rajak, Putt Sakdhnagool, Manaschai Kunaseth, F. Shimojo, S. Fukushima, A. Nakano, Ye Luo, R. Kalia, K. Nomura, P. Vashishta","doi":"10.1145/3368474.3368489","DOIUrl":null,"url":null,"abstract":"Confluence of extreme-scale quantum dynamics simulations (i.e. quantum@scale) and cutting-edge x-ray free-electron laser experiments are revolutionizing materials science. An archetypal example is the exciting concept of using picosecond light pulses to control emergent material properties on demand in atomically-thin layered materials. This paper describes efforts to scale our quantum molecular dynamics engine toward the United States' first exaflop/s computer, under an Aurora Early Science Program project named \"Metascalable layered material genome\". Key algorithmic and computing techniques incorporated are: (1) globally-scalable and locally-fast solvers within a linear-scaling divide-conquer-recombine algorithmic framework; (2) algebraic 'BLASification' of computational kernels; and (3) data alignment and loop restructuring, along with register and cache blocking, for enhanced vectorization and efficient memory access. The resulting weak-scaling parallel efficiency was 0.93 on 131,072 Intel Xeon Phi cores for a 56.6 million atom (or 169 million valence-electron) system, whereas the various code transformations achieved 5-fold speedup. The optimized simulation engine allowed us for the first time to establish a significant effect of substrate on the dynamics of layered material upon electronic excitation.","PeriodicalId":314778,"journal":{"name":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3368474.3368489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Confluence of extreme-scale quantum dynamics simulations (i.e. quantum@scale) and cutting-edge x-ray free-electron laser experiments are revolutionizing materials science. An archetypal example is the exciting concept of using picosecond light pulses to control emergent material properties on demand in atomically-thin layered materials. This paper describes efforts to scale our quantum molecular dynamics engine toward the United States' first exaflop/s computer, under an Aurora Early Science Program project named "Metascalable layered material genome". Key algorithmic and computing techniques incorporated are: (1) globally-scalable and locally-fast solvers within a linear-scaling divide-conquer-recombine algorithmic framework; (2) algebraic 'BLASification' of computational kernels; and (3) data alignment and loop restructuring, along with register and cache blocking, for enhanced vectorization and efficient memory access. The resulting weak-scaling parallel efficiency was 0.93 on 131,072 Intel Xeon Phi cores for a 56.6 million atom (or 169 million valence-electron) system, whereas the various code transformations achieved 5-fold speedup. The optimized simulation engine allowed us for the first time to establish a significant effect of substrate on the dynamics of layered material upon electronic excitation.