Detecting Open Banking API Security Threats Using Bayesian Attack Graphs

Dawood Behbehani, M. Rajarajan, N. Komninos, Khalid Al–Begain
{"title":"Detecting Open Banking API Security Threats Using Bayesian Attack Graphs","authors":"Dawood Behbehani, M. Rajarajan, N. Komninos, Khalid Al–Begain","doi":"10.1109/CICN56167.2022.10008365","DOIUrl":null,"url":null,"abstract":"Particularly amid Covid-19, enterprises' digital transformation has rapidly accelerated, making cybersecurity an even bigger challenge. Financial institutions adopt FinTech technologies to advance their service and achieve an enhanced customer experience that creates a competitive edge in the market. FinTech products utilise open banking API services to allow communication between a financial institution and a FinTech provider. However, such an integration introduces significant security concerns. Therefore, financial firms must ensure that a robust API service to protect the bank's infrastructure and its customers' information. To address this concern, we propose a Framework for Open Banking API security that utilises STRIDE model to identify security threats in FinTech integration via Open Banking API and Bayesian Attack Graphs to automate predictions of the most exploitable attack paths.","PeriodicalId":287589,"journal":{"name":"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN56167.2022.10008365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Particularly amid Covid-19, enterprises' digital transformation has rapidly accelerated, making cybersecurity an even bigger challenge. Financial institutions adopt FinTech technologies to advance their service and achieve an enhanced customer experience that creates a competitive edge in the market. FinTech products utilise open banking API services to allow communication between a financial institution and a FinTech provider. However, such an integration introduces significant security concerns. Therefore, financial firms must ensure that a robust API service to protect the bank's infrastructure and its customers' information. To address this concern, we propose a Framework for Open Banking API security that utilises STRIDE model to identify security threats in FinTech integration via Open Banking API and Bayesian Attack Graphs to automate predictions of the most exploitable attack paths.
利用贝叶斯攻击图检测开放银行API安全威胁
特别是在新冠疫情背景下,企业数字化转型加速,网络安全面临更大挑战。金融机构采用金融科技技术来提升他们的服务,并实现增强的客户体验,从而在市场上创造竞争优势。金融科技产品利用开放式银行API服务,允许金融机构和金融科技提供商之间进行通信。然而,这样的集成引入了重要的安全问题。因此,金融公司必须确保一个健壮的API服务来保护银行的基础设施及其客户的信息。为了解决这一问题,我们提出了一个开放银行API安全框架,该框架利用STRIDE模型通过开放银行API和贝叶斯攻击图识别金融科技集成中的安全威胁,以自动预测最易利用的攻击路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信