TNNT: The Named Entity Recognition Toolkit

Sandaru Seneviratne, Sergio J. Rodr'iguez M'endez, Xuecheng Zhang, Pouya Ghiasnezhad Omran, K. Taylor, A. Haller
{"title":"TNNT: The Named Entity Recognition Toolkit","authors":"Sandaru Seneviratne, Sergio J. Rodr'iguez M'endez, Xuecheng Zhang, Pouya Ghiasnezhad Omran, K. Taylor, A. Haller","doi":"10.1145/3460210.3493550","DOIUrl":null,"url":null,"abstract":"Extraction of categorised named entities from text is a complex task given the availability of a variety of Named Entity Recognition (NER) models and the unstructured information encoded in different source document formats. Processing the documents to extract text, identifying suitable NER models for a task, and obtaining statistical information is important in data analysis to make informed decisions. This paper presents\\footnoteThe manuscript follows guidelines to showcase a demonstration that introduces an overview of how the toolkit works: input document set, initial settings, processing, and output set. The input document set is artificial in order to show various toolkit capabilities. TNNT, a toolkit that automates the extraction of categorised named entities from unstructured information encoded in source documents, using diverse state-of-the-art (SOTA) Natural Language Processing (NLP) tools and NER models.TNNT integrates 21 different NER models as part of a Knowledge Graph Construction Pipeline (KGCP) that takes a document set as input and processes it based on the defined settings, applying the selected blocks of NER models to output the results. The toolkit generates all results with an integrated summary of the extracted entities, enabling enhanced data analysis to support the KGCP, and also, to aid further NLP tasks.","PeriodicalId":377331,"journal":{"name":"Proceedings of the 11th on Knowledge Capture Conference","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th on Knowledge Capture Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460210.3493550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Extraction of categorised named entities from text is a complex task given the availability of a variety of Named Entity Recognition (NER) models and the unstructured information encoded in different source document formats. Processing the documents to extract text, identifying suitable NER models for a task, and obtaining statistical information is important in data analysis to make informed decisions. This paper presents\footnoteThe manuscript follows guidelines to showcase a demonstration that introduces an overview of how the toolkit works: input document set, initial settings, processing, and output set. The input document set is artificial in order to show various toolkit capabilities. TNNT, a toolkit that automates the extraction of categorised named entities from unstructured information encoded in source documents, using diverse state-of-the-art (SOTA) Natural Language Processing (NLP) tools and NER models.TNNT integrates 21 different NER models as part of a Knowledge Graph Construction Pipeline (KGCP) that takes a document set as input and processes it based on the defined settings, applying the selected blocks of NER models to output the results. The toolkit generates all results with an integrated summary of the extracted entities, enabling enhanced data analysis to support the KGCP, and also, to aid further NLP tasks.
TNNT:命名实体识别工具包
考虑到各种命名实体识别(NER)模型的可用性和以不同源文档格式编码的非结构化信息,从文本中提取分类命名实体是一项复杂的任务。处理文档以提取文本、为任务确定合适的NER模型以及获取统计信息在数据分析中对于做出明智的决策非常重要。该手稿遵循指导原则展示了一个演示,该演示介绍了工具包如何工作的概述:输入文档集、初始设置、处理和输出集。输入文档集是人为的,以显示各种工具包功能。TNNT是一个使用各种最先进的(SOTA)自然语言处理(NLP)工具和NER模型,从源文档中编码的非结构化信息中自动提取分类命名实体的工具包。TNNT集成了21种不同的NER模型,作为知识图构建管道(KGCP)的一部分,该管道将文档集作为输入,并根据定义的设置对其进行处理,应用NER模型的选定块来输出结果。该工具包生成所有结果,并对提取的实体进行综合总结,从而增强数据分析以支持KGCP,同时也有助于进一步的NLP任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信