A BAS Algorithm Based Neural Network for Intrusion Detection

Pei Zhang, Yinyan Zhang
{"title":"A BAS Algorithm Based Neural Network for Intrusion Detection","authors":"Pei Zhang, Yinyan Zhang","doi":"10.1109/ICICIP53388.2021.9642170","DOIUrl":null,"url":null,"abstract":"Intrusion detection is very important to ensure the security of information systems. Neural networks aided by metaheuristic algorithms have been shown to be an alternative for intrusion detection. However, the current methods require much time for the training of the neural networks. In this paper, we propose a beetle antennae search (BAS) algorithm based neural network for efficient intrusion detection. In order to highlight the superiority of the algorithm, we conduct numerical experiments with a simple neural network based on the KDD CUP 99 dataset, which show that the proposed method is effective.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Intrusion detection is very important to ensure the security of information systems. Neural networks aided by metaheuristic algorithms have been shown to be an alternative for intrusion detection. However, the current methods require much time for the training of the neural networks. In this paper, we propose a beetle antennae search (BAS) algorithm based neural network for efficient intrusion detection. In order to highlight the superiority of the algorithm, we conduct numerical experiments with a simple neural network based on the KDD CUP 99 dataset, which show that the proposed method is effective.
基于BAS算法的神经网络入侵检测
入侵检测是保证信息系统安全的重要手段。神经网络辅助的元启发式算法已被证明是入侵检测的一种替代方案。然而,目前的方法需要大量的时间来训练神经网络。本文提出了一种基于甲虫天线搜索(BAS)算法的神经网络入侵检测方法。为了突出算法的优越性,我们在KDD CUP 99数据集上用一个简单的神经网络进行了数值实验,结果表明该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信