Impulsive Noise Parameter Estimation: A Deep CNN-LSTM Network Approach

Alka Isac, Bassant Selim, Zeinab Sobhanigavgani, Georges Kaddoum, M. Tatipamula
{"title":"Impulsive Noise Parameter Estimation: A Deep CNN-LSTM Network Approach","authors":"Alka Isac, Bassant Selim, Zeinab Sobhanigavgani, Georges Kaddoum, M. Tatipamula","doi":"10.1109/CommNet52204.2021.9641904","DOIUrl":null,"url":null,"abstract":"Impulsive noise is a widespread phenomenon that can hinder the performance of wireless communication systems, especially given the wireless medium’s dynamic channel characteristics. To alleviate the effects of the noise, several mitigation techniques can be resorted to. In this context, information on the impulsive noise’s statistical parameters is generally required in order to optimize the mitigation technique performance. To this end, this study proposes a deep learning approach for the estimation of the statistical parameters of impulsive noise with memory where the received signal is impaired by Rayleigh fading and two-state Markov-Gaussian impulsive noise. A deep Convolutional Neural Network - Long-Short Term Memory (CNN-LSTM) model is designed to extract this information. Provided results demonstrate that the model outperforms baseline approaches and is able to efficiently learn and infer the impulsive noise parameters from a relatively small number of symbols, making it suitable for impulsive noise detection and mitigation in dynamic environments.","PeriodicalId":354985,"journal":{"name":"2021 4th International Conference on Advanced Communication Technologies and Networking (CommNet)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Advanced Communication Technologies and Networking (CommNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CommNet52204.2021.9641904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Impulsive noise is a widespread phenomenon that can hinder the performance of wireless communication systems, especially given the wireless medium’s dynamic channel characteristics. To alleviate the effects of the noise, several mitigation techniques can be resorted to. In this context, information on the impulsive noise’s statistical parameters is generally required in order to optimize the mitigation technique performance. To this end, this study proposes a deep learning approach for the estimation of the statistical parameters of impulsive noise with memory where the received signal is impaired by Rayleigh fading and two-state Markov-Gaussian impulsive noise. A deep Convolutional Neural Network - Long-Short Term Memory (CNN-LSTM) model is designed to extract this information. Provided results demonstrate that the model outperforms baseline approaches and is able to efficiently learn and infer the impulsive noise parameters from a relatively small number of symbols, making it suitable for impulsive noise detection and mitigation in dynamic environments.
脉冲噪声参数估计:一种深度CNN-LSTM网络方法
脉冲噪声是一种普遍存在的现象,它会影响无线通信系统的性能,特别是考虑到无线介质的动态信道特性。为了减轻噪音的影响,可以采用几种减轻噪音的技术。在这种情况下,通常需要脉冲噪声的统计参数信息,以优化降噪技术的性能。为此,本研究提出了一种深度学习方法,用于估计接收信号受到瑞利衰落和两态马尔可夫-高斯脉冲噪声损害的具有记忆的脉冲噪声的统计参数。设计了一个深度卷积神经网络-长短期记忆(CNN-LSTM)模型来提取这些信息。结果表明,该模型优于基线方法,能够从相对较少的符号中有效地学习和推断脉冲噪声参数,使其适用于动态环境中的脉冲噪声检测和缓解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信