Typability and Type Inference in Atomic Polymorphism

M. Protin, Gilda Ferreira
{"title":"Typability and Type Inference in Atomic Polymorphism","authors":"M. Protin, Gilda Ferreira","doi":"10.46298/lmcs-18(3:22)2022","DOIUrl":null,"url":null,"abstract":"It is well-known that typability, type inhabitation and type inference are\nundecidable in the Girard-Reynolds polymorphic system F. It has recently been\nproven that type inhabitation remains undecidable even in the predicative\nfragment of system F in which all universal instantiations have an atomic\nwitness (system Fat). In this paper we analyze typability and type inference in\nCurry style variants of system Fat and show that typability is decidable and\nthat there is an algorithm for type inference which is capable of dealing with\nnon-redundancy constraints.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(3:22)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is well-known that typability, type inhabitation and type inference are undecidable in the Girard-Reynolds polymorphic system F. It has recently been proven that type inhabitation remains undecidable even in the predicative fragment of system F in which all universal instantiations have an atomic witness (system Fat). In this paper we analyze typability and type inference in Curry style variants of system Fat and show that typability is decidable and that there is an algorithm for type inference which is capable of dealing with non-redundancy constraints.
原子多态性中的可类型性和类型推断
众所周知,在吉拉德-雷诺兹多态系统F中,可类型性、类型驻留和类型推断是不可确定的。最近已经证明,即使在系统F的谓词片段中,所有的全称实例都有一个原子见证(系统Fat),类型驻留仍然是不可确定的。本文分析了系统Fat的可类型性和类型推断,证明了可类型性是可决定的,并且存在一种能够处理非冗余约束的类型推断算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信