Parallel multi-dimensional ROLAP indexing

F. Dehne, Todd Eavis, A. Rau-Chaplin
{"title":"Parallel multi-dimensional ROLAP indexing","authors":"F. Dehne, Todd Eavis, A. Rau-Chaplin","doi":"10.1109/CCGRID.2003.1199356","DOIUrl":null,"url":null,"abstract":"This paper addresses the query performance issue for Relational OLAP (ROLAP) datacubes. We present a distributed multi-dimensional ROLAP indexing scheme which is practical to implement, requires only a small communication volume, and is fully adapted to distributed disks. Our solution is efficient for spatial searches in high dimensions and scalable in terms of data sizes, dimensions, and number of processors. Our method is also incrementally maintainable. Using \"surrogate\" group-bys, it allows for the efficient processing of arbitrary OLAP queries on partial cubes, where not all of the group-bys have been materialized. Our experiments show that the ROLAP advantage of better scalability, in comparison to MOLAP can be maintained while providing, at the same time, a fast and flexible index for OLAP queries.","PeriodicalId":433323,"journal":{"name":"CCGrid 2003. 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2003. Proceedings.","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCGrid 2003. 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2003.1199356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

This paper addresses the query performance issue for Relational OLAP (ROLAP) datacubes. We present a distributed multi-dimensional ROLAP indexing scheme which is practical to implement, requires only a small communication volume, and is fully adapted to distributed disks. Our solution is efficient for spatial searches in high dimensions and scalable in terms of data sizes, dimensions, and number of processors. Our method is also incrementally maintainable. Using "surrogate" group-bys, it allows for the efficient processing of arbitrary OLAP queries on partial cubes, where not all of the group-bys have been materialized. Our experiments show that the ROLAP advantage of better scalability, in comparison to MOLAP can be maintained while providing, at the same time, a fast and flexible index for OLAP queries.
并行多维ROLAP索引
本文讨论了关系OLAP (ROLAP)数据池的查询性能问题。我们提出了一种易于实现的分布式多维ROLAP索引方案,该方案只需要很小的通信容量,并且完全适应分布式磁盘。我们的解决方案对于高维空间搜索是高效的,并且在数据大小、维度和处理器数量方面具有可伸缩性。我们的方法也是增量可维护的。使用“代理”组-by,它允许对部分多维数据集进行任意OLAP查询的有效处理,其中并非所有组-by都已实现。我们的实验表明,与MOLAP相比,ROLAP可以保持更好的可扩展性优势,同时为OLAP查询提供快速灵活的索引。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信