Machine-learning based VMAF prediction for HDR video content

Christoph Müller, Stephan Steglich, Sandra Groß, Paul Kremer
{"title":"Machine-learning based VMAF prediction for HDR video content","authors":"Christoph Müller, Stephan Steglich, Sandra Groß, Paul Kremer","doi":"10.1145/3587819.3593941","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology for predicting VMAF video quality scores for high dynamic range (HDR) video content using machine learning. To train the ML model, we are collecting a dataset of HDR and converted SDR video clips, as well as their corresponding objective video quality scores, specifically the Video Multimethod Assessment Fusion (VMAF) values. A 3D convolutional neural network (3D-CNN) model is being trained on the collected dataset. Finally, a hands-on demonstrator is developed to showcase the newly predicted HDR-VMAF metric in comparison to VMAF and other metric values for SDR content, and to conduct further validation with user testing.","PeriodicalId":330983,"journal":{"name":"Proceedings of the 14th Conference on ACM Multimedia Systems","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th Conference on ACM Multimedia Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3587819.3593941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a methodology for predicting VMAF video quality scores for high dynamic range (HDR) video content using machine learning. To train the ML model, we are collecting a dataset of HDR and converted SDR video clips, as well as their corresponding objective video quality scores, specifically the Video Multimethod Assessment Fusion (VMAF) values. A 3D convolutional neural network (3D-CNN) model is being trained on the collected dataset. Finally, a hands-on demonstrator is developed to showcase the newly predicted HDR-VMAF metric in comparison to VMAF and other metric values for SDR content, and to conduct further validation with user testing.
基于机器学习的HDR视频内容VMAF预测
本文提出了一种使用机器学习预测高动态范围(HDR)视频内容的VMAF视频质量分数的方法。为了训练机器学习模型,我们收集了HDR和转换后的SDR视频片段的数据集,以及它们相应的客观视频质量分数,特别是视频多方法评估融合(VMAF)值。在收集的数据集上训练3D卷积神经网络(3D- cnn)模型。最后,开发了一个动手演示器,将新预测的HDR-VMAF度量与VMAF和SDR内容的其他度量值进行比较,并通过用户测试进行进一步验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信