Structured sparse ternary weight coding of deep neural networks for efficient hardware implementations

Yoonho Boo, Wonyong Sung
{"title":"Structured sparse ternary weight coding of deep neural networks for efficient hardware implementations","authors":"Yoonho Boo, Wonyong Sung","doi":"10.1109/SiPS.2017.8110021","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) usually demand a large amount of operations for real-time inference. Especially, fully-connected layers contain a large number of weights, thus they usually need many off-chip memory accesses for inference. We propose a weight compression method for deep neural networks, which allows values of +1 or −1 only at predetermined positions of the weights so that decoding using a table can be conducted easily. For example, the structured sparse (8,2) coding allows at most two non-zero values among eight weights. This method not only enables multiplication-free DNN implementations but also compresses the weight storage by up to x32 compared to floating-point networks. Weight distribution normalization and gradual pruning techniques are applied to mitigate the performance degradation. The experiments are conducted with fully-connected deep neural networks and convolutional neural networks.","PeriodicalId":251688,"journal":{"name":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2017.8110021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Deep neural networks (DNNs) usually demand a large amount of operations for real-time inference. Especially, fully-connected layers contain a large number of weights, thus they usually need many off-chip memory accesses for inference. We propose a weight compression method for deep neural networks, which allows values of +1 or −1 only at predetermined positions of the weights so that decoding using a table can be conducted easily. For example, the structured sparse (8,2) coding allows at most two non-zero values among eight weights. This method not only enables multiplication-free DNN implementations but also compresses the weight storage by up to x32 compared to floating-point networks. Weight distribution normalization and gradual pruning techniques are applied to mitigate the performance degradation. The experiments are conducted with fully-connected deep neural networks and convolutional neural networks.
结构化稀疏三元权重编码的深度神经网络的高效硬件实现
深度神经网络(dnn)通常需要大量的操作来进行实时推理。特别是,全连接层包含大量的权值,因此它们通常需要大量的片外内存访问来进行推理。我们提出了一种深度神经网络的权值压缩方法,该方法只允许在权值的预定位置取值+1或- 1,以便使用表进行解码可以很容易地进行。例如,结构化稀疏(8,2)编码在八个权重中最多允许两个非零值。这种方法不仅可以实现无乘法的DNN实现,而且与浮点网络相比,还可以将权重存储压缩到x32。采用权分布归一化和渐进式剪枝技术来缓解性能下降。实验采用全连接深度神经网络和卷积神经网络进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信