Document level polarity classification with attention gated recurrent unit

Hoon-Keng Poon, W. Yap, Y. Tee, B. Goi, W. Lee
{"title":"Document level polarity classification with attention gated recurrent unit","authors":"Hoon-Keng Poon, W. Yap, Y. Tee, B. Goi, W. Lee","doi":"10.1109/ICOIN.2018.8343074","DOIUrl":null,"url":null,"abstract":"Reviews can be categorized into two extreme polarities, that is, positive or negative. These reviews from different consumers on a product or service can help a new consumer to make a good decision. Document level sentiment classification aims to understand user generated content or opinion towards certain products or services. In this paper, we propose a recurrent neural network model in classifying positive and negative reviews using gated recurrent unit and attention mechanism. Effectiveness of our proposed model is evaluated using Yelp Review dataset obtained from Yelp Dataset Challenge. Experimental results show that our proposed model can outperform existing models for document level sentiment classification.","PeriodicalId":228799,"journal":{"name":"2018 International Conference on Information Networking (ICOIN)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN.2018.8343074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Reviews can be categorized into two extreme polarities, that is, positive or negative. These reviews from different consumers on a product or service can help a new consumer to make a good decision. Document level sentiment classification aims to understand user generated content or opinion towards certain products or services. In this paper, we propose a recurrent neural network model in classifying positive and negative reviews using gated recurrent unit and attention mechanism. Effectiveness of our proposed model is evaluated using Yelp Review dataset obtained from Yelp Dataset Challenge. Experimental results show that our proposed model can outperform existing models for document level sentiment classification.
基于注意门控循环单元的文件级极性分类
评论可以分为两个极端,即积极的或消极的。这些来自不同消费者对产品或服务的评论可以帮助新消费者做出正确的决定。文档级情感分类旨在了解用户生成的内容或对某些产品或服务的意见。本文提出了一种基于门控循环单元和注意机制的递归神经网络正评和差评分类模型。使用Yelp dataset Challenge获得的Yelp Review数据集对我们提出的模型的有效性进行了评估。实验结果表明,本文提出的模型在文档级情感分类方面优于现有的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信