Multi-direction Reconstruction for Fault Diagnosis of Train Bearings

Tong Fang, Qiang Liu, D. Cui
{"title":"Multi-direction Reconstruction for Fault Diagnosis of Train Bearings","authors":"Tong Fang, Qiang Liu, D. Cui","doi":"10.1109/ICIRT.2018.8641612","DOIUrl":null,"url":null,"abstract":"Bearing condition is important for the operation safety of the trains. Traditional rule-based method can only detect the fault after the bearing is seriously damaged when the bearing temperature is far higher than the normal situation. In this paper, data driven bearing fault diagnosis of train is discussed. Taking the operation dynamics into account, a dynamic inner principal component analysis (DiPCA) based bearing fault monitoring method is proposed. After that, in order to locate the fault, a DiPCA based multi-directional reconstruction method is proposed to identify the possible faulty variables. Results from case studies using the data collected from a real train operation demonstrate the effectiveness of the proposed methods.","PeriodicalId":202415,"journal":{"name":"2018 International Conference on Intelligent Rail Transportation (ICIRT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Rail Transportation (ICIRT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIRT.2018.8641612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Bearing condition is important for the operation safety of the trains. Traditional rule-based method can only detect the fault after the bearing is seriously damaged when the bearing temperature is far higher than the normal situation. In this paper, data driven bearing fault diagnosis of train is discussed. Taking the operation dynamics into account, a dynamic inner principal component analysis (DiPCA) based bearing fault monitoring method is proposed. After that, in order to locate the fault, a DiPCA based multi-directional reconstruction method is proposed to identify the possible faulty variables. Results from case studies using the data collected from a real train operation demonstrate the effectiveness of the proposed methods.
基于多方向重构的列车轴承故障诊断
列车的承载状况对列车的运行安全至关重要。传统的基于规则的方法只能在轴承温度远高于正常情况时,检测到轴承严重损坏后的故障。研究了数据驱动的列车轴承故障诊断方法。考虑轴承运行动力学,提出了一种基于动态内主成分分析(DiPCA)的轴承故障监测方法。然后,为了定位故障,提出了一种基于DiPCA的多向重构方法来识别可能的故障变量。从实际列车运行中收集的数据进行了案例研究,结果表明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信