Information-Directed Policy Search in Sparse-Reward Settings via the Occupancy Information Ratio

Wesley A. Suttle, Alec Koppel, Ji Liu
{"title":"Information-Directed Policy Search in Sparse-Reward Settings via the Occupancy Information Ratio","authors":"Wesley A. Suttle, Alec Koppel, Ji Liu","doi":"10.1109/CISS56502.2023.10089655","DOIUrl":null,"url":null,"abstract":"This paper examines a new measure of the exploration/exploitation trade-off in reinforcement learning (RL) called the occupancy information ratio (OIR). To this end, the paper derives the Information-Directed Actor-Critic (IDAC) algorithm for solving the OIR problem, provides an overview of the rich theory underlying IDAC and related OIR policy gradient methods, and experimentally investigates the advantages of such methods. The central contribution of this paper is to provide empirical evidence that, due to the form of the OIR objective, IDAC enjoys superior performance over vanilla RL methods in sparse-reward environments.","PeriodicalId":243775,"journal":{"name":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS56502.2023.10089655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines a new measure of the exploration/exploitation trade-off in reinforcement learning (RL) called the occupancy information ratio (OIR). To this end, the paper derives the Information-Directed Actor-Critic (IDAC) algorithm for solving the OIR problem, provides an overview of the rich theory underlying IDAC and related OIR policy gradient methods, and experimentally investigates the advantages of such methods. The central contribution of this paper is to provide empirical evidence that, due to the form of the OIR objective, IDAC enjoys superior performance over vanilla RL methods in sparse-reward environments.
基于占用信息比的稀疏奖励环境下信息导向策略搜索
本文研究了强化学习(RL)中探索/利用权衡的一种新度量,称为占用信息比(OIR)。为此,本文推导了用于解决OIR问题的信息导向行为者-批评家(Information-Directed Actor-Critic, IDAC)算法,概述了IDAC的丰富理论基础和相关的OIR策略梯度方法,并实验研究了这些方法的优点。本文的核心贡献是提供了经验证据,证明由于OIR目标的形式,IDAC在稀疏奖励环境中比普通RL方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信