29.2 A Scalable Quantum Magnetometer in 65nm CMOS with Vector-Field Detection Capability

Mohamed I. Ibrahim, Christopher Foy, D. Englund, R. Han
{"title":"29.2 A Scalable Quantum Magnetometer in 65nm CMOS with Vector-Field Detection Capability","authors":"Mohamed I. Ibrahim, Christopher Foy, D. Englund, R. Han","doi":"10.1109/ISSCC.2019.8662434","DOIUrl":null,"url":null,"abstract":"Room-temperature control and detection of the nitrogen vacancy (NV) center in diamond’s spin-state has enabled magnetic sensing with high sensitivity and spatial resolution [1], [2]. However, current NV sensing apparatuses use bulky off-the-shelf components, which greatly increase the system’s scale. In [3], a compact platform, which attaches nanodiamond particles to a CMOS sensor, shrinks this spin-based magnetometer to chip scale; however, the optically detected magnetic resonance (ODMR) curve it generates carries large fluctuation leading to inferior sensitivity. In this paper, we present a CMOS-NV quantum sensor with (i) a highly-scalable microwave-delivering structure and (ii) a Talboteffect-based photonic filter with enhanced green-to-red suppression ratio. The former enables coherent driving of an increased number of NV centers, and the latter reduces the shot noise of the photo-detector caused by the input green laser. In addition, the usage of a bulk diamond also enables vector magnetometry, which allows for the tracking of magnetic objects and navigation. The prototype sensor provides a measured vector-field sensitivity of 245nT/Hz $^{1/2}$.","PeriodicalId":265551,"journal":{"name":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2019.8662434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Room-temperature control and detection of the nitrogen vacancy (NV) center in diamond’s spin-state has enabled magnetic sensing with high sensitivity and spatial resolution [1], [2]. However, current NV sensing apparatuses use bulky off-the-shelf components, which greatly increase the system’s scale. In [3], a compact platform, which attaches nanodiamond particles to a CMOS sensor, shrinks this spin-based magnetometer to chip scale; however, the optically detected magnetic resonance (ODMR) curve it generates carries large fluctuation leading to inferior sensitivity. In this paper, we present a CMOS-NV quantum sensor with (i) a highly-scalable microwave-delivering structure and (ii) a Talboteffect-based photonic filter with enhanced green-to-red suppression ratio. The former enables coherent driving of an increased number of NV centers, and the latter reduces the shot noise of the photo-detector caused by the input green laser. In addition, the usage of a bulk diamond also enables vector magnetometry, which allows for the tracking of magnetic objects and navigation. The prototype sensor provides a measured vector-field sensitivity of 245nT/Hz $^{1/2}$.
29.2具有矢量场检测能力的65nm CMOS可扩展量子磁强计
室温控制和检测金刚石自旋态中的氮空位(NV)中心,实现了高灵敏度和空间分辨率的磁传感[1],[2]。然而,目前的NV传感设备使用笨重的现成组件,这大大增加了系统的规模。在[3]中,一个紧凑的平台将纳米金刚石颗粒附着在CMOS传感器上,将这种基于自旋的磁力计缩小到芯片规模;但其产生的光探测磁共振(ODMR)曲线波动较大,灵敏度较差。在本文中,我们提出了一种CMOS-NV量子传感器,具有(i)高度可扩展的微波传递结构和(ii)基于talbote效应的光子滤波器,具有增强的绿红抑制比。前者可以增加NV中心的相干驱动数量,后者可以降低由输入绿色激光引起的光探测器的散粒噪声。此外,散装钻石的使用还可以实现矢量磁强计,从而可以跟踪磁性物体和导航。原型传感器的测量矢量场灵敏度为245nT/Hz $^{1/2}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信