Revisiting the decomposition of Karp, Miller and Winograd

A. Darte, F. Vivien
{"title":"Revisiting the decomposition of Karp, Miller and Winograd","authors":"A. Darte, F. Vivien","doi":"10.1109/ASAP.1995.522901","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the construction of multi-dimensional schedules for a system of uniform recurrence equations. We show that this problem is dual to the problem of computability of a system of uniform recurrence equations. We propose a new study of the decomposition algorithm first proposed by Karp, Miller and Winograd: we base our implementation on linear programming resolutions whose duals give exactly the desired multi-dimensional schedules. Furthermore, we prove that the schedules built this way are optimal up to a constant factor.","PeriodicalId":354358,"journal":{"name":"Proceedings The International Conference on Application Specific Array Processors","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings The International Conference on Application Specific Array Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.1995.522901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

This paper is devoted to the construction of multi-dimensional schedules for a system of uniform recurrence equations. We show that this problem is dual to the problem of computability of a system of uniform recurrence equations. We propose a new study of the decomposition algorithm first proposed by Karp, Miller and Winograd: we base our implementation on linear programming resolutions whose duals give exactly the desired multi-dimensional schedules. Furthermore, we prove that the schedules built this way are optimal up to a constant factor.
重新审视Karp, Miller和Winograd的分解
本文研究了一类一致递归方程组的多维调度的构造。我们证明了这个问题与一致递归方程组的可计算性问题是对偶的。我们对Karp, Miller和Winograd首先提出的分解算法进行了新的研究:我们基于线性规划决议的实现,其对偶精确地给出了所需的多维调度。此外,我们证明了以这种方式建立的调度是最优的,直到一个常数因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信