Particle Thompson Sampling with Static Particles

Zeyu Zhou, B. Hajek
{"title":"Particle Thompson Sampling with Static Particles","authors":"Zeyu Zhou, B. Hajek","doi":"10.1109/CISS56502.2023.10089653","DOIUrl":null,"url":null,"abstract":"Particle Thompson sampling (PTS) is a simple and flexible approximation of Thompson sampling for solving stochastic bandit problems. PTS circumvents the intractability of maintaining a continuous posterior distribution in Thompson sampling by replacing the continuous distribution with a discrete distribution supported at a set of weighted static particles. We analyze the dynamics of particles' weights in PTS for general stochastic bandits without assuming that the set of particles contains the unknown system parameter. It is shown that fit particles survive and unfit particles decay, with the fitness measured in KL-divergence. For Bernoulli bandit problems, all but a few fit particles decay.","PeriodicalId":243775,"journal":{"name":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS56502.2023.10089653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Particle Thompson sampling (PTS) is a simple and flexible approximation of Thompson sampling for solving stochastic bandit problems. PTS circumvents the intractability of maintaining a continuous posterior distribution in Thompson sampling by replacing the continuous distribution with a discrete distribution supported at a set of weighted static particles. We analyze the dynamics of particles' weights in PTS for general stochastic bandits without assuming that the set of particles contains the unknown system parameter. It is shown that fit particles survive and unfit particles decay, with the fitness measured in KL-divergence. For Bernoulli bandit problems, all but a few fit particles decay.
粒子汤普森采样与静态粒子
粒子汤普森抽样(PTS)是求解随机强盗问题的一种简单灵活的近似汤普森抽样方法。PTS通过用一组加权静态粒子支持的离散分布取代连续分布,避免了汤普森采样中维持连续后验分布的棘手问题。我们在不假设粒子集包含未知系统参数的情况下,分析了一般随机系统中粒子权值的动态变化。结果表明,适合粒子存活,不适合粒子衰变,适应度用kl散度测量。对于伯努利强盗问题,除了少数合适粒子外,所有粒子都衰变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信