Universal Skolem Sets

F. Luca, J. Ouaknine, J. Worrell
{"title":"Universal Skolem Sets","authors":"F. Luca, J. Ouaknine, J. Worrell","doi":"10.1109/LICS52264.2021.9470513","DOIUrl":null,"url":null,"abstract":"It is a longstanding open problem whether there is an algorithm to decide the Skolem Problem for linear recurrence sequences, namely whether a given such sequence has a zero term. In this paper we introduce the notion of a Universal Skolem Set: an infinite subset $\\mathcal{S}$ of the positive integers such that there is an effective procedure that inputs a linear recurrence sequence u = (u(n))n ≥ 0 and decides whether u(n) = 0 for some $n \\in \\mathcal{S}$. The main technical contribution of the paper is to exhibit such a set.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"49 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

It is a longstanding open problem whether there is an algorithm to decide the Skolem Problem for linear recurrence sequences, namely whether a given such sequence has a zero term. In this paper we introduce the notion of a Universal Skolem Set: an infinite subset $\mathcal{S}$ of the positive integers such that there is an effective procedure that inputs a linear recurrence sequence u = (u(n))n ≥ 0 and decides whether u(n) = 0 for some $n \in \mathcal{S}$. The main technical contribution of the paper is to exhibit such a set.
通用Skolem集
是否存在一种算法来判定线性递归序列的Skolem问题,即给定的线性递归序列是否有零项,是一个长期存在的开放性问题。本文引入了全称Skolem集合的概念:正整数的无限子集$\mathcal{S}$,使得存在一个有效的过程,该过程可以输入一个线性递归序列u = (u(n))n≥0,并决定在\mathcal{S}$中某个$n \是否u(n) = 0。本文的主要技术贡献就是展示了这样一套。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信