Ahmed S. A. Mubarak, Amr Amrallah, Hany S. Hussein, E. M. Mohamed
{"title":"Low Density Parity Check (LDPC) coded MIMO-Constant Envelop Modulation System with IF sampled 1-bit ADC","authors":"Ahmed S. A. Mubarak, Amr Amrallah, Hany S. Hussein, E. M. Mohamed","doi":"10.1109/JEC-ECC.2016.7518954","DOIUrl":null,"url":null,"abstract":"MIMO-Constant Envelop Modulation (CEM) is a very power and complexity efficient system, which is introduced as alternative candidate to the currently used MIMO-Orthogonal Frequency Division Multiplexing (OFDM). CEM system enables to use high efficient nonlinear power amplifier on the transmitter side and 1 bit (low resolution) analog to digital converter (ADC) on the receiver side. Due to adopting the low resolution at the receiver side a great reduction in hardware complexity and power consumption can be achieved. However, there will be a noticeable degradation on the performance of bit error rate (BER) on the receiver side due to sever quantization error introduced by the low resolution ADC, so a forward error correction coding is essential to enhance the BER. In this paper a LDPC coded MIMO-CEM system was used as a replacement for MIMO-OFDM to deal with the BER degradation problem of the CEM system. The performance of the LDPC coded MIMO-CEM with Gaussian Minimum Phase Shift Keying (GMSK) modulation is evaluated over a multi-path Rayleigh fading channel. It showed that LDPC codes are effective to improve the BER performance of CEM on Rayleigh fading channels. According to the simulation results, the MIMO-CEM system provides a significant improvement in BER performance and outperforms the un-coded and the original convolutional coder based CEM systems.","PeriodicalId":362288,"journal":{"name":"2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JEC-ECC.2016.7518954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
MIMO-Constant Envelop Modulation (CEM) is a very power and complexity efficient system, which is introduced as alternative candidate to the currently used MIMO-Orthogonal Frequency Division Multiplexing (OFDM). CEM system enables to use high efficient nonlinear power amplifier on the transmitter side and 1 bit (low resolution) analog to digital converter (ADC) on the receiver side. Due to adopting the low resolution at the receiver side a great reduction in hardware complexity and power consumption can be achieved. However, there will be a noticeable degradation on the performance of bit error rate (BER) on the receiver side due to sever quantization error introduced by the low resolution ADC, so a forward error correction coding is essential to enhance the BER. In this paper a LDPC coded MIMO-CEM system was used as a replacement for MIMO-OFDM to deal with the BER degradation problem of the CEM system. The performance of the LDPC coded MIMO-CEM with Gaussian Minimum Phase Shift Keying (GMSK) modulation is evaluated over a multi-path Rayleigh fading channel. It showed that LDPC codes are effective to improve the BER performance of CEM on Rayleigh fading channels. According to the simulation results, the MIMO-CEM system provides a significant improvement in BER performance and outperforms the un-coded and the original convolutional coder based CEM systems.