{"title":"Workload-aware live storage migration for clouds","authors":"Jie Zheng, T. Ng, K. Sripanidkulchai","doi":"10.1145/1952682.1952700","DOIUrl":null,"url":null,"abstract":"The emerging open cloud computing model will provide users with great freedom to dynamically migrate virtualized computing services to, from, and between clouds over the wide-area. While this freedom leads to many potential benefits, the running services must be minimally disrupted by the migration. Unfortunately, current solutions for wide-area migration incur too much disruption as they will significantly slow down storage I/O operations during migration. The resulting increase in service latency could be very costly to a business. This paper presents a novel storage migration scheduling algorithm that can greatly improve storage I/O performance during wide-area migration. Our algorithm is unique in that it considers individual virtual machine's storage I/O workload such as temporal locality, spatial locality and popularity characteristics to compute an efficient data transfer schedule. Using a fully implemented system on KVM and a trace-driven framework, we show that our algorithm provides large performance benefits across a wide range of popular virtual machine workloads.","PeriodicalId":202844,"journal":{"name":"International Conference on Virtual Execution Environments","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Virtual Execution Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1952682.1952700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86
Abstract
The emerging open cloud computing model will provide users with great freedom to dynamically migrate virtualized computing services to, from, and between clouds over the wide-area. While this freedom leads to many potential benefits, the running services must be minimally disrupted by the migration. Unfortunately, current solutions for wide-area migration incur too much disruption as they will significantly slow down storage I/O operations during migration. The resulting increase in service latency could be very costly to a business. This paper presents a novel storage migration scheduling algorithm that can greatly improve storage I/O performance during wide-area migration. Our algorithm is unique in that it considers individual virtual machine's storage I/O workload such as temporal locality, spatial locality and popularity characteristics to compute an efficient data transfer schedule. Using a fully implemented system on KVM and a trace-driven framework, we show that our algorithm provides large performance benefits across a wide range of popular virtual machine workloads.