Chinese Named Entity Recognition Combining Statistical Model wih Human Knowledge

NER@ACL Pub Date : 2003-07-12 DOI:10.3115/1119384.1119393
Youzheng Wu, Jun Zhao, Bo Xu
{"title":"Chinese Named Entity Recognition Combining Statistical Model wih Human Knowledge","authors":"Youzheng Wu, Jun Zhao, Bo Xu","doi":"10.3115/1119384.1119393","DOIUrl":null,"url":null,"abstract":"Named Entity Recognition is one of the key techniques in the fields of natural language processing, information retrieval, question answering and so on. Unfortunately, Chinese Named Entity Recognition (NER) is more difficult for the lack of capitalization information and the uncertainty in word segmentation. In this paper, we present a hybrid algorithm which can combine a class-based statistical model with various types of human knowledge very well. In order to avoid data sparseness problem, we employ a back-off model and [Abstract contained text which could not be captured.], a Chinese thesaurus, to smooth the parameters in the model. The F-measure of person names, location names, and organization names on the newswire test data for the 1999 IEER evaluation in Mandarin is 86.84%, 84.40% and 76.22% respectively.","PeriodicalId":237242,"journal":{"name":"NER@ACL","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NER@ACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1119384.1119393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

Named Entity Recognition is one of the key techniques in the fields of natural language processing, information retrieval, question answering and so on. Unfortunately, Chinese Named Entity Recognition (NER) is more difficult for the lack of capitalization information and the uncertainty in word segmentation. In this paper, we present a hybrid algorithm which can combine a class-based statistical model with various types of human knowledge very well. In order to avoid data sparseness problem, we employ a back-off model and [Abstract contained text which could not be captured.], a Chinese thesaurus, to smooth the parameters in the model. The F-measure of person names, location names, and organization names on the newswire test data for the 1999 IEER evaluation in Mandarin is 86.84%, 84.40% and 76.22% respectively.
统计模型与人类知识相结合的中文命名实体识别
命名实体识别是自然语言处理、信息检索、问题回答等领域的关键技术之一。然而,中文命名实体识别(NER)由于缺乏大写信息和分词的不确定性而更加困难。在本文中,我们提出了一种混合算法,它可以很好地将基于类的统计模型与各种类型的人类知识结合起来。为了避免数据稀疏性问题,我们采用了回退模型,抽象包含了无法被捕获的文本。],以平滑模型中的参数。1999年IEER中文评价的新闻专线测试数据中人名、地名和机构名称的f值分别为86.84%、84.40%和76.22%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信