Multiscale modeling, experimental validation, and optimal operation for a batch pulp digester with a novel solvent

Silabrata Pahari, Juhyeon Kim, Mairui Zhang, Anqi Ji, Changjin Yoo, J. Kwon
{"title":"Multiscale modeling, experimental validation, and optimal operation for a batch pulp digester with a novel solvent","authors":"Silabrata Pahari, Juhyeon Kim, Mairui Zhang, Anqi Ji, Changjin Yoo, J. Kwon","doi":"10.23919/ACC55779.2023.10155797","DOIUrl":null,"url":null,"abstract":"The rising need for reducing the usage and wastage of paper has mandated the production of mechanically superior papers, and it is known that maintaining a high degree of polymerization (DP) for cellulose microfibers ensures the high tensile strength of the pulp. To mitigate the cellulose degradation and establish the optimum operating strategies of the pulping processes, it is necessary to understand the effect of the operation conditions on cellulose DP. In this sense, we proposed a novel multiscale model which can predict the mesoscopic properties (e.g., Kappa number, and fiber morphology) alongside the microscopic properties (e.g., cellulose DP). The model incorporates a multi-layered kinetic Monte Carlo (kMC) framework that allows us to capture the temporal evolution of Kappa number, fiber morphology, and cellulose DP in a computationally tractable fashion. Furthermore, the model predictions are validated with the experimental results, which are then used to find an optimal operation profile to achieve desired Kappa number and cellulose DP.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10155797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rising need for reducing the usage and wastage of paper has mandated the production of mechanically superior papers, and it is known that maintaining a high degree of polymerization (DP) for cellulose microfibers ensures the high tensile strength of the pulp. To mitigate the cellulose degradation and establish the optimum operating strategies of the pulping processes, it is necessary to understand the effect of the operation conditions on cellulose DP. In this sense, we proposed a novel multiscale model which can predict the mesoscopic properties (e.g., Kappa number, and fiber morphology) alongside the microscopic properties (e.g., cellulose DP). The model incorporates a multi-layered kinetic Monte Carlo (kMC) framework that allows us to capture the temporal evolution of Kappa number, fiber morphology, and cellulose DP in a computationally tractable fashion. Furthermore, the model predictions are validated with the experimental results, which are then used to find an optimal operation profile to achieve desired Kappa number and cellulose DP.
多尺度建模,实验验证,并与一种新型溶剂间歇式纸浆消化池的优化操作
减少纸张使用和浪费的需求日益增加,要求生产机械性能优越的纸张,众所周知,保持纤维素微纤维的高度聚合(DP)可以确保纸浆的高拉伸强度。为了减轻纤维素的降解,建立最佳的制浆工艺操作策略,有必要了解操作条件对纤维素DP的影响。在这个意义上,我们提出了一个新的多尺度模型,可以预测介观性质(如Kappa数和纤维形态)以及微观性质(如纤维素DP)。该模型结合了多层动力学蒙特卡罗(kMC)框架,使我们能够以计算易于处理的方式捕获Kappa数,纤维形态和纤维素DP的时间演变。此外,用实验结果验证了模型的预测,然后用实验结果来寻找最佳的操作剖面,以获得所需的Kappa数和纤维素DP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信