On the connectivity of the disjointness graph of segments of point sets in general position in the plane

J. Leaños, M. K. C. Ndjatchi, L. M. R'ios-Castro
{"title":"On the connectivity of the disjointness graph of segments of point sets in general position in the plane","authors":"J. Leaños, M. K. C. Ndjatchi, L. M. R'ios-Castro","doi":"10.46298/dmtcs.6678","DOIUrl":null,"url":null,"abstract":"Let $P$ be a set of $n\\geq 3$ points in general position in the plane. The\nedge disjointness graph $D(P)$ of $P$ is the graph whose vertices are all the\nclosed straight line segments with endpoints in $P$, two of which are adjacent\nin $D(P)$ if and only if they are disjoint. We show that the connectivity of\n$D(P)$ is at least\n$\\binom{\\lfloor\\frac{n-2}{2}\\rfloor}{2}+\\binom{\\lceil\\frac{n-2}{2}\\rceil}{2}$,\nand that this bound is tight for each $n\\geq 3$.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.6678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Let $P$ be a set of $n\geq 3$ points in general position in the plane. The edge disjointness graph $D(P)$ of $P$ is the graph whose vertices are all the closed straight line segments with endpoints in $P$, two of which are adjacent in $D(P)$ if and only if they are disjoint. We show that the connectivity of $D(P)$ is at least $\binom{\lfloor\frac{n-2}{2}\rfloor}{2}+\binom{\lceil\frac{n-2}{2}\rceil}{2}$, and that this bound is tight for each $n\geq 3$.
平面上一般位置点集段的不相交图的连通性
设$P$为平面上一般位置上的$n\geq 3$点的集合。$P$的边不相交图$D(P)$是顶点都是端点在$P$的封闭直线段的图,当且仅当两条直线不相交时,它们在$D(P)$中相邻。我们证明了$D(P)$的连通性至少是$\binom{\lfloor\frac{n-2}{2}\rfloor}{2}+\binom{\lceil\frac{n-2}{2}\rceil}{2}$,并且这个界对于每个$n\geq 3$都是紧的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信