Optimization of Waveform Parameters for Multiple Target Tracking Systems in Cognitive Radars

Taylan Denizcan Çaha, L. D. Ata
{"title":"Optimization of Waveform Parameters for Multiple Target Tracking Systems in Cognitive Radars","authors":"Taylan Denizcan Çaha, L. D. Ata","doi":"10.1109/RadarConf2351548.2023.10149572","DOIUrl":null,"url":null,"abstract":"In this study, cognitive radar (CR) applications including radar waveform parameters and track update interval selection are investigated in order to balance the time resource cost and increase the accuracy performance of multiple target tracking systems. For the target tracking part, the unscented Kalman filter (UKF) is applied together with the joint probabilistic data association (JPDA) and the interacting multiple models (IMM) algorithm, which is used to realize more than one target motion model. The waveform parameters and track update interval are adaptively updated by using the outputs of the radar data processing block including target tracking and classification algorithms. The waveform parameters to be updated, the product of the pulse width and the number of integrated pulses, and the track update interval are selected. In the optimization function, the limit values of the parameter selections are decided by using target class information which is supplied by a random forest classifier. Along with the proposed cost function, track continuity and time resource allocation are tested and system performance is demonstrated depending on the target characteristics. In the simulations part, multiple target scenarios that include targets with different maneuvers and radar cross sections (RCS) have been examined and it is shown that the proposed cost function can be applied in multiple target tracking scenarios.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, cognitive radar (CR) applications including radar waveform parameters and track update interval selection are investigated in order to balance the time resource cost and increase the accuracy performance of multiple target tracking systems. For the target tracking part, the unscented Kalman filter (UKF) is applied together with the joint probabilistic data association (JPDA) and the interacting multiple models (IMM) algorithm, which is used to realize more than one target motion model. The waveform parameters and track update interval are adaptively updated by using the outputs of the radar data processing block including target tracking and classification algorithms. The waveform parameters to be updated, the product of the pulse width and the number of integrated pulses, and the track update interval are selected. In the optimization function, the limit values of the parameter selections are decided by using target class information which is supplied by a random forest classifier. Along with the proposed cost function, track continuity and time resource allocation are tested and system performance is demonstrated depending on the target characteristics. In the simulations part, multiple target scenarios that include targets with different maneuvers and radar cross sections (RCS) have been examined and it is shown that the proposed cost function can be applied in multiple target tracking scenarios.
认知雷达中多目标跟踪系统的波形参数优化
为了平衡时间资源成本和提高多目标跟踪系统的精度性能,研究了认知雷达在多目标跟踪系统中的应用,包括雷达波形参数和航迹更新间隔选择。在目标跟踪部分,将无气味卡尔曼滤波(UKF)与联合概率数据关联(JPDA)和交互多模型(IMM)算法相结合,实现多个目标运动模型。利用包括目标跟踪算法和分类算法在内的雷达数据处理块的输出自适应更新波形参数和航迹更新间隔。选择需要更新的波形参数、脉冲宽度与积分脉冲数的乘积、航迹更新间隔。在优化函数中,利用随机森林分类器提供的目标类信息确定参数选择的极限值。与所提出的成本函数一起,测试了跟踪连续性和时间资源分配,并根据目标特性演示了系统性能。在仿真部分,研究了包含不同机动和雷达截面积(RCS)目标的多目标跟踪场景,结果表明所提出的代价函数可以应用于多目标跟踪场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信