TeleGam: Combining Visualization and Verbalization for Interpretable Machine Learning

Fred Hohman, Arjun Srinivasan, S. Drucker
{"title":"TeleGam: Combining Visualization and Verbalization for Interpretable Machine Learning","authors":"Fred Hohman, Arjun Srinivasan, S. Drucker","doi":"10.1109/VISUAL.2019.8933695","DOIUrl":null,"url":null,"abstract":"While machine learning (ML) continues to find success in solving previously-thought hard problems, interpreting and exploring ML models remains challenging. Recent work has shown that visualizations are a powerful tool to aid debugging, analyzing, and interpreting ML models. However, depending on the complexity of the model (e.g., number of features), interpreting these visualizations can be difficult and may require additional expertise. Alternatively, textual descriptions, or verbalizations, can be a simple, yet effective way to communicate or summarize key aspects about a model, such as the overall trend in a model’s predictions or comparisons between pairs of data instances. With the potential benefits of visualizations and verbalizations in mind, we explore how the two can be combined to aid ML interpretability. Specifically, we present a prototype system, TeleGam, that demonstrates how visualizations and verbalizations can collectively support interactive exploration of ML models, for example, generalized additive models (GAMs). We describe TELEGAM’s interface and underlying heuristics to generate the verbalizations. We conclude by discussing how TeleGam can serve as a platform to conduct future studies for understanding user expectations and designing novel interfaces for interpretable ML.","PeriodicalId":192801,"journal":{"name":"2019 IEEE Visualization Conference (VIS)","volume":"68 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2019.8933695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

While machine learning (ML) continues to find success in solving previously-thought hard problems, interpreting and exploring ML models remains challenging. Recent work has shown that visualizations are a powerful tool to aid debugging, analyzing, and interpreting ML models. However, depending on the complexity of the model (e.g., number of features), interpreting these visualizations can be difficult and may require additional expertise. Alternatively, textual descriptions, or verbalizations, can be a simple, yet effective way to communicate or summarize key aspects about a model, such as the overall trend in a model’s predictions or comparisons between pairs of data instances. With the potential benefits of visualizations and verbalizations in mind, we explore how the two can be combined to aid ML interpretability. Specifically, we present a prototype system, TeleGam, that demonstrates how visualizations and verbalizations can collectively support interactive exploration of ML models, for example, generalized additive models (GAMs). We describe TELEGAM’s interface and underlying heuristics to generate the verbalizations. We conclude by discussing how TeleGam can serve as a platform to conduct future studies for understanding user expectations and designing novel interfaces for interpretable ML.
TeleGam:可视化和语言化相结合的可解释性机器学习
虽然机器学习(ML)继续在解决以前认为的难题方面取得成功,但解释和探索ML模型仍然具有挑战性。最近的研究表明,可视化是帮助调试、分析和解释ML模型的强大工具。然而,根据模型的复杂性(例如,特征的数量),解释这些可视化可能是困难的,并且可能需要额外的专业知识。另外,文本描述或语言描述可以是一种简单而有效的方式,用于交流或总结模型的关键方面,例如模型预测中的总体趋势或对数据实例之间的比较。考虑到可视化和语言化的潜在好处,我们探索了如何将两者结合起来以帮助ML的可解释性。具体来说,我们提出了一个原型系统TeleGam,它演示了可视化和语言化如何共同支持ML模型的交互式探索,例如,广义加性模型(GAMs)。我们描述了TELEGAM的接口和底层启发式来生成语言。最后,我们讨论了TeleGam如何作为平台进行未来的研究,以理解用户期望并为可解释的ML设计新颖的接口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信