Safe Control with Minimal Regret

Andrea Martin, Luca Furieri, F. Dörfler, J. Lygeros, G. Ferrari-Trecate
{"title":"Safe Control with Minimal Regret","authors":"Andrea Martin, Luca Furieri, F. Dörfler, J. Lygeros, G. Ferrari-Trecate","doi":"10.48550/arXiv.2203.00358","DOIUrl":null,"url":null,"abstract":"As we move towards safety-critical cyber-physical systems that operate in non-stationary and uncertain environments, it becomes crucial to close the gap between classical optimal control algorithms and adaptive learning-based methods. In this paper, we present an efficient optimization-based approach for computing a finite-horizon robustly safe control policy that minimizes dynamic regret, in the sense of the loss relative to the optimal sequence of control actions selected in hindsight by a clairvoyant controller. By leveraging the system level synthesis framework (SLS), our method extends recent results on regret minimization for the linear quadratic regulator to optimal control subject to hard safety constraints, and allows competing against a safety-aware clairvoyant policy with minor modifications. Numerical experiments confirm superior performance with respect to finite-horizon constrained $\\mathcal{H}_2$ and $\\mathcal{H}_\\infty$ control laws when the disturbance realizations poorly fit classical assumptions.","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.00358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

As we move towards safety-critical cyber-physical systems that operate in non-stationary and uncertain environments, it becomes crucial to close the gap between classical optimal control algorithms and adaptive learning-based methods. In this paper, we present an efficient optimization-based approach for computing a finite-horizon robustly safe control policy that minimizes dynamic regret, in the sense of the loss relative to the optimal sequence of control actions selected in hindsight by a clairvoyant controller. By leveraging the system level synthesis framework (SLS), our method extends recent results on regret minimization for the linear quadratic regulator to optimal control subject to hard safety constraints, and allows competing against a safety-aware clairvoyant policy with minor modifications. Numerical experiments confirm superior performance with respect to finite-horizon constrained $\mathcal{H}_2$ and $\mathcal{H}_\infty$ control laws when the disturbance realizations poorly fit classical assumptions.
以最小的遗憾安全控制
当我们转向在非平稳和不确定环境中运行的安全关键网络物理系统时,缩小经典最优控制算法与基于自适应学习的方法之间的差距变得至关重要。在本文中,我们提出了一种有效的基于优化的方法来计算一个有限视界鲁棒安全控制策略,该策略可以最小化动态后悔,即相对于由千里眼控制器事后选择的最优控制动作序列的损失。通过利用系统级综合框架(SLS),我们的方法将线性二次调节器的遗憾最小化的最新结果扩展到受硬安全约束的最优控制,并允许与安全感知的洞察力策略进行轻微修改。数值实验证实,当扰动实现不符合经典假设时,有限视界约束$\mathcal{H}_2$和$\mathcal{H}_\infty$控制律具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信