BADGR: A practical GHR implementation for TAGE branch predictors

David J. Schlais, Mikko H. Lipasti
{"title":"BADGR: A practical GHR implementation for TAGE branch predictors","authors":"David J. Schlais, Mikko H. Lipasti","doi":"10.1109/ICCD.2016.7753338","DOIUrl":null,"url":null,"abstract":"In this work, we explore global history register (GHR) implementations for Tagged Geometric length (TAGE) style branch predictors with speculative updates. We break down the requirements to both update and recover TAGE predictors' history registers during normal operation and after mispeculation, discussing where various designs exhibit large checkpoint and/or operation overheads. To reduce these inefficiencies, we introduce BADGR, a novel GHR design for TAGE predictors that lowers power consumption and chip area over naive checkpointing techniques by 90% and 85%, respectively.","PeriodicalId":297899,"journal":{"name":"2016 IEEE 34th International Conference on Computer Design (ICCD)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 34th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2016.7753338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this work, we explore global history register (GHR) implementations for Tagged Geometric length (TAGE) style branch predictors with speculative updates. We break down the requirements to both update and recover TAGE predictors' history registers during normal operation and after mispeculation, discussing where various designs exhibit large checkpoint and/or operation overheads. To reduce these inefficiencies, we introduce BADGR, a novel GHR design for TAGE predictors that lowers power consumption and chip area over naive checkpointing techniques by 90% and 85%, respectively.
BADGR:用于TAGE分支预测器的实用GHR实现
在这项工作中,我们探索了带有推测性更新的标记几何长度(TAGE)风格分支预测器的全局历史寄存器(GHR)实现。我们分解了在正常操作期间和错误计算之后更新和恢复TAGE预测器历史寄存器的需求,讨论了各种设计在哪些地方显示出较大的检查点和/或操作开销。为了降低这些低效率,我们引入了BADGR,这是一种用于TAGE预测器的新型GHR设计,与原始检查点技术相比,它的功耗和芯片面积分别降低了90%和85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信