Relative entropy and exponential deviation bounds for general Markov chains

Ioannis Kontoyiannis, L. A. Lastras-Montaño, Sean P. Meyn
{"title":"Relative entropy and exponential deviation bounds for general Markov chains","authors":"Ioannis Kontoyiannis, L. A. Lastras-Montaño, Sean P. Meyn","doi":"10.1109/ISIT.2005.1523607","DOIUrl":null,"url":null,"abstract":"We develop explicit, general bounds for the probability that the normalized partial sums of a function of a Markov chain on a general alphabet would exceed the steady-state mean of that function by a given amount. Our bounds combine simple information-theoretic ideas together with techniques from optimization and some fairly elementary tools from analysis. In one direction, we obtain a general bound for the important class of Doeblin chains; this bound is optimal, in the sense that in the special case of independent and identically distributed random variables it essentially reduces to the classical Hoeffding bound. In another direction, motivated by important problems in simulation, we develop a series of bounds in a form which is particularly suited to these problems, and which apply to the more general class of \"geometrically ergodic\" Markov chains","PeriodicalId":166130,"journal":{"name":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

We develop explicit, general bounds for the probability that the normalized partial sums of a function of a Markov chain on a general alphabet would exceed the steady-state mean of that function by a given amount. Our bounds combine simple information-theoretic ideas together with techniques from optimization and some fairly elementary tools from analysis. In one direction, we obtain a general bound for the important class of Doeblin chains; this bound is optimal, in the sense that in the special case of independent and identically distributed random variables it essentially reduces to the classical Hoeffding bound. In another direction, motivated by important problems in simulation, we develop a series of bounds in a form which is particularly suited to these problems, and which apply to the more general class of "geometrically ergodic" Markov chains
一般马尔可夫链的相对熵和指数偏差界
我们为一般字母表上的马尔可夫链函数的规格化部分和超过该函数的稳态平均值给定量的概率开发了显式的一般界限。我们的界限结合了简单的信息论思想、优化技术和一些相当基本的分析工具。在一个方向上,我们得到了一类重要的Doeblin链的一般界;这个界是最优的,因为在独立同分布随机变量的特殊情况下,它本质上简化为经典的Hoeffding界。在另一个方向上,由于模拟中的重要问题,我们以一种特别适合这些问题的形式开发了一系列边界,并适用于更一般的“几何遍历”马尔可夫链
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信