Protected, back-illuminated silicon photocathodes or photoanodes for water splitting tandem stacks (Conference Presentation)

P. Vesborg, Dowon Bae, B. Seger, I. Chorkendorff, O. Hansen, T. Pedersen, B. Mei, R. Frydendal
{"title":"Protected, back-illuminated silicon photocathodes or photoanodes for water splitting tandem stacks (Conference Presentation)","authors":"P. Vesborg, Dowon Bae, B. Seger, I. Chorkendorff, O. Hansen, T. Pedersen, B. Mei, R. Frydendal","doi":"10.1117/12.2238697","DOIUrl":null,"url":null,"abstract":"Silicon is a promising contender in the race for low-bandgap absorbers for use in a solar driven monolithic water splitting cell (PEC). However, given its role as the low-bandgap material the silicon must sit behind the corresponding high-bandgap material and as such, it will be exposed to (red) light from the dry back-side – not from the wet front side, where the electrochemistry takes place.[1,2] Depending on the configuration of the selective contacts (junctions) this may lead to compromises between high absorption and low recombination.[2,3] We discuss the tradeoffs and compare modeling results to measurements. Regardless of configuration, the wet surface of the silicon is prone to passivation or corrosion and must therefore be carefully protected in service in order to remain active. We demonstrate the use of TiO2 as an effective protection layer for both photoanodes and photocathodes in acid electrolyte [4] and NiCoOx for photoanodes in alkaline electrolyte. [3] References: [1]: B. Seger et alia, Energ. Environ. Sci., 7 (8), 2397-2413 (2014), DOI:10.1039/c4ee01335b [2]: D. Bae et alia, Energ. Environ. Sci., 8 (2), 650-660 (2015), DOI: 10.1039/c4ee03723e [3]: D. Bae et alia, submitted, (2016) [4]: B. Mei et alia, J. Phys. Chem. C., 119 (27), 15019-15027 (2015), DOI: 10.1021/acs.jpcc.5b04407","PeriodicalId":140444,"journal":{"name":"Optics + Photonics for Sustainable Energy","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics + Photonics for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2238697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon is a promising contender in the race for low-bandgap absorbers for use in a solar driven monolithic water splitting cell (PEC). However, given its role as the low-bandgap material the silicon must sit behind the corresponding high-bandgap material and as such, it will be exposed to (red) light from the dry back-side – not from the wet front side, where the electrochemistry takes place.[1,2] Depending on the configuration of the selective contacts (junctions) this may lead to compromises between high absorption and low recombination.[2,3] We discuss the tradeoffs and compare modeling results to measurements. Regardless of configuration, the wet surface of the silicon is prone to passivation or corrosion and must therefore be carefully protected in service in order to remain active. We demonstrate the use of TiO2 as an effective protection layer for both photoanodes and photocathodes in acid electrolyte [4] and NiCoOx for photoanodes in alkaline electrolyte. [3] References: [1]: B. Seger et alia, Energ. Environ. Sci., 7 (8), 2397-2413 (2014), DOI:10.1039/c4ee01335b [2]: D. Bae et alia, Energ. Environ. Sci., 8 (2), 650-660 (2015), DOI: 10.1039/c4ee03723e [3]: D. Bae et alia, submitted, (2016) [4]: B. Mei et alia, J. Phys. Chem. C., 119 (27), 15019-15027 (2015), DOI: 10.1021/acs.jpcc.5b04407
受保护的背光硅光电阴极或用于水分解串联堆叠的光电阳极(会议报告)
硅是在太阳能驱动单片水分解电池(PEC)中使用的低带隙吸收剂的竞争中很有前途的竞争者。然而,考虑到它作为低带隙材料的作用,硅必须位于相应的高带隙材料的后面,因此,它将暴露在(红色)光下,来自干燥的背面,而不是来自电化学发生的潮湿的正面。[1,2]根据选择接触(结)的配置,这可能导致高吸收和低重组之间的妥协。[2,3]我们讨论了权衡,并将建模结果与测量结果进行了比较。无论配置如何,硅的湿表面容易钝化或腐蚀,因此在使用中必须仔细保护,以保持活性。我们证明了在酸性电解质[4]和光阴极中使用TiO2作为有效的保护层,在碱性电解质中使用NiCoOx作为光阳极的保护层。[3]参考文献:[1]:B. Seger等,能源。环绕。科学。能源学报,7 (8),2397-2413 (2014),DOI:10.1039/c4ee01335b [2]: D. Bae等。环绕。科学。科学通报,8 (2),650-660 (2015),DOI: 10.1039/c4ee03723e [3]: d.b ebae等,已提交,(2016)[4]:b.m ei等,J.物理学。化学。植物学报,119 (27),15019-15027 (2015),DOI: 10.1021/acs.jpcc.5b04407
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信