Development of nanostructured Ge1-xSnx alloy using ion beam techniques for band gap engineering

G. Bhowmik, Mengbing Huang
{"title":"Development of nanostructured Ge1-xSnx alloy using ion beam techniques for band gap engineering","authors":"G. Bhowmik, Mengbing Huang","doi":"10.1109/NANOTECH.2018.8653561","DOIUrl":null,"url":null,"abstract":"Silicon Photonics is a disruptive technology that promises to revolutionize high performance computing by taking advantage of light in data transmission. Due to inefficient emission from Si, an outstanding quest has been the development of non-equilibrium group IV nanoscale alloy in achieving new functionalities, such as the formation of a direct bandgap elemental semiconductor. To address this challenge, we propose to use ion beam processing to fabricate Ge1−xSnx alloy nanowires in Ge wafers as a potential material structure for building Si-compatible light sources. Preliminary investigations of ion implantation of Sn into Ge crystals using Rutherford backscattering technique (RBS), their structural properties examined through scanning electron microscopy (SEM) and Sn distribution using energy-dispersive X-ray spectroscopy (EDX), crystallinity and Sn substitutionality using Raman spectroscopy is presented. This non-equilibrium induction of Sn in Ge, a bottom-up approach to formation of direct bandgap Ge1−xSnx nanowires opens up unlimited possibilities in group IV photonics.","PeriodicalId":292669,"journal":{"name":"2018 IEEE Nanotechnology Symposium (ANTS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Nanotechnology Symposium (ANTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOTECH.2018.8653561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon Photonics is a disruptive technology that promises to revolutionize high performance computing by taking advantage of light in data transmission. Due to inefficient emission from Si, an outstanding quest has been the development of non-equilibrium group IV nanoscale alloy in achieving new functionalities, such as the formation of a direct bandgap elemental semiconductor. To address this challenge, we propose to use ion beam processing to fabricate Ge1−xSnx alloy nanowires in Ge wafers as a potential material structure for building Si-compatible light sources. Preliminary investigations of ion implantation of Sn into Ge crystals using Rutherford backscattering technique (RBS), their structural properties examined through scanning electron microscopy (SEM) and Sn distribution using energy-dispersive X-ray spectroscopy (EDX), crystallinity and Sn substitutionality using Raman spectroscopy is presented. This non-equilibrium induction of Sn in Ge, a bottom-up approach to formation of direct bandgap Ge1−xSnx nanowires opens up unlimited possibilities in group IV photonics.
带隙工程离子束技术制备纳米结构Ge1-xSnx合金
硅光子学是一项颠覆性技术,通过利用光进行数据传输,有望彻底改变高性能计算。由于硅的低效率发射,一个突出的任务是开发非平衡族四纳米级合金,以实现新的功能,如形成直接带隙元素半导体。为了解决这一挑战,我们建议使用离子束工艺在Ge晶圆中制造Ge1−xSnx合金纳米线,作为构建硅兼容光源的潜在材料结构。利用卢瑟福后向散射技术(RBS)对Sn离子注入锗晶体进行了初步研究,并利用扫描电子显微镜(SEM)和能量色散x射线光谱(EDX)对锗晶体的Sn分布进行了研究,利用拉曼光谱对Sn的结晶度和取代性进行了研究。这种Sn在Ge中的非平衡感应,一种自下而上形成直接带隙Ge1−xSnx纳米线的方法,为IV族光子学开辟了无限的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信