W&G-Bert: A Concept for a Pre-Trained Automotive Warranty and Goodwill Language Representation Model for Warranty and Goodwill Text Mining

Lukas Jonathan Weber, Alice Kirchheim, Axel Zimmermann
{"title":"W&G-Bert: A Concept for a Pre-Trained Automotive Warranty and Goodwill Language Representation Model for Warranty and Goodwill Text Mining","authors":"Lukas Jonathan Weber, Alice Kirchheim, Axel Zimmermann","doi":"10.5121/csit.2022.120304","DOIUrl":null,"url":null,"abstract":"The request for precise text mining applications to extract information of company based automotive warranty and goodwill (W&G) data is steadily increasing. The progress of the analytical competence of text mining methods for information extraction is among others based on the developments and insights of deep learning techniques applied in natural language processing (NLP). Directly applying NLP based architectures to automotive W&G text mining would wage to a significant performance loss due to different word distributions of general domain and W&G specific corpora. Therefore, labelled W&G training datasets are necessary to transform a general-domain language model in a specific-domain one to increase the performance in W&G text mining tasks.","PeriodicalId":153049,"journal":{"name":"Computer Networks & Communications Trends","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks & Communications Trends","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.120304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The request for precise text mining applications to extract information of company based automotive warranty and goodwill (W&G) data is steadily increasing. The progress of the analytical competence of text mining methods for information extraction is among others based on the developments and insights of deep learning techniques applied in natural language processing (NLP). Directly applying NLP based architectures to automotive W&G text mining would wage to a significant performance loss due to different word distributions of general domain and W&G specific corpora. Therefore, labelled W&G training datasets are necessary to transform a general-domain language model in a specific-domain one to increase the performance in W&G text mining tasks.
W&G-Bert:用于保修和商誉文本挖掘的预训练汽车保修和商誉语言表示模型的概念
对精确文本挖掘应用程序提取基于公司的汽车保修和商誉(W&G)数据信息的需求正在稳步增长。用于信息提取的文本挖掘方法的分析能力的进步是基于自然语言处理(NLP)中应用的深度学习技术的发展和见解。由于通用领域和W&G特定语料库的词分布不同,直接将基于NLP的体系结构应用于汽车W&G文本挖掘会导致显著的性能损失。因此,标记W&G训练数据集是将通用领域语言模型转换为特定领域语言模型以提高W&G文本挖掘任务性能所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信