Hierarchical block Jacobi on a cluster of multi-core Intel processors

M. Soliman, Fatma S. Ahmed
{"title":"Hierarchical block Jacobi on a cluster of multi-core Intel processors","authors":"M. Soliman, Fatma S. Ahmed","doi":"10.1109/JEC-ECC.2016.7518974","DOIUrl":null,"url":null,"abstract":"Nowadays, it is widely accepted that exploiting all forms of parallelism is the only way to significantly improve performance. The three major forms of parallelism on a modern processor are ILP, DLP, and TLP, which are not mutually exclusive. To gain further performance improvements, MPI can be used on a cluster of computers. This paper exploits the capabilities of distributed multi-core Intel processors for accelerating the well-known singular value decomposition (SVD) based on Jacobi's algorithm. On a cluster of Fujitsu Siemens CELSIUS R550 with quad-core Intel Xeon E5410 processor running at 2.33 GHz, hierarchical block Jacobi is implemented and evaluated. On eight nodes, our results show a performance of 184.56 double-precision GFLOPS by exploiting multi-threading, SIMD, and memory hierarchy techniques. Moreover, on large matrix size, the speedups of the hierarchical block Jacobi algorithm over sequential one-sided Jacobi improve from 17.33 using superscalar implementation to 30.46, 62.94, and 86.55, by exploiting the SIMD, multi-threading, and multi-threading SIMD techniques, respectively.","PeriodicalId":362288,"journal":{"name":"2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC)","volume":"2000 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JEC-ECC.2016.7518974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, it is widely accepted that exploiting all forms of parallelism is the only way to significantly improve performance. The three major forms of parallelism on a modern processor are ILP, DLP, and TLP, which are not mutually exclusive. To gain further performance improvements, MPI can be used on a cluster of computers. This paper exploits the capabilities of distributed multi-core Intel processors for accelerating the well-known singular value decomposition (SVD) based on Jacobi's algorithm. On a cluster of Fujitsu Siemens CELSIUS R550 with quad-core Intel Xeon E5410 processor running at 2.33 GHz, hierarchical block Jacobi is implemented and evaluated. On eight nodes, our results show a performance of 184.56 double-precision GFLOPS by exploiting multi-threading, SIMD, and memory hierarchy techniques. Moreover, on large matrix size, the speedups of the hierarchical block Jacobi algorithm over sequential one-sided Jacobi improve from 17.33 using superscalar implementation to 30.46, 62.94, and 86.55, by exploiting the SIMD, multi-threading, and multi-threading SIMD techniques, respectively.
在多核英特尔处理器集群上的分层块Jacobi
如今,人们普遍认为,利用所有形式的并行性是显著提高性能的唯一途径。现代处理器上并行的三种主要形式是ILP、DLP和TLP,它们并不是相互排斥的。为了获得进一步的性能改进,可以在计算机集群上使用MPI。本文利用分布式多核Intel处理器的能力来加速基于Jacobi算法的奇异值分解(SVD)。在配备四核Intel至强E5410处理器、工作频率为2.33 GHz的Fujitsu Siemens CELSIUS R550集群上,实现并评估了分层块Jacobi。在8个节点上,通过利用多线程、SIMD和内存层次结构技术,我们的结果显示了184.56双精度GFLOPS的性能。此外,在大矩阵大小的情况下,分层块Jacobi算法比顺序单面Jacobi算法的加速速度分别从使用超标量实现的17.33提高到利用SIMD、多线程和多线程SIMD技术的30.46、62.94和86.55。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信