A Survey on Vulnerability Prediction using GNNs

Evangelos Katsadouros, C. Patrikakis
{"title":"A Survey on Vulnerability Prediction using GNNs","authors":"Evangelos Katsadouros, C. Patrikakis","doi":"10.1145/3575879.3575964","DOIUrl":null,"url":null,"abstract":"The massive release of software products has led to critical incidents in the software industry due to low-quality software. Software engineers lack security knowledge which causes the development of insecure software. Traditional solutions for analysing code for vulnerabilities suffer from high false positives and negative rates. Researchers over the last decade have proposed mechanisms for analysing code for vulnerabilities using machine learning. The results are promising and could replace traditional static analysis tools or accompany them in the foreseeable future to produce more reliable results. This survey presents the work done so far in vulnerability detection using Graph Neural Networks (GNNs). Presents the GNNs architectures, the graph representations, the datasets, and the results of these studies.","PeriodicalId":164036,"journal":{"name":"Proceedings of the 26th Pan-Hellenic Conference on Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th Pan-Hellenic Conference on Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575879.3575964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The massive release of software products has led to critical incidents in the software industry due to low-quality software. Software engineers lack security knowledge which causes the development of insecure software. Traditional solutions for analysing code for vulnerabilities suffer from high false positives and negative rates. Researchers over the last decade have proposed mechanisms for analysing code for vulnerabilities using machine learning. The results are promising and could replace traditional static analysis tools or accompany them in the foreseeable future to produce more reliable results. This survey presents the work done so far in vulnerability detection using Graph Neural Networks (GNNs). Presents the GNNs architectures, the graph representations, the datasets, and the results of these studies.
基于gnn的漏洞预测研究进展
软件产品的大量发布导致了软件行业因低质量软件而发生的重大事件。软件工程师缺乏安全知识,导致开发出不安全的软件。分析代码漏洞的传统解决方案存在较高的误报率和负率。在过去十年中,研究人员提出了使用机器学习分析漏洞代码的机制。结果是有希望的,可以取代传统的静态分析工具,或者在可预见的将来伴随它们产生更可靠的结果。本调查介绍了迄今为止使用图神经网络(gnn)进行漏洞检测的工作。介绍了gnn架构、图表示、数据集和这些研究的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信