Toward comprehensible software defect prediction models using fuzzy logic

Hamdi A. Al-Jamimi
{"title":"Toward comprehensible software defect prediction models using fuzzy logic","authors":"Hamdi A. Al-Jamimi","doi":"10.1109/ICSESS.2016.7883031","DOIUrl":null,"url":null,"abstract":"Software defect prediction is a discipline that predicts the defects proneness of future modules. Software metrics are used for this kind of predication. However, the predication metrics are associated with uncertainty, thus the metrics need to be expressed in linguistic terms to overcome ambiguity and uncertainty. Two types of knowledge are utilized as input to the prediction models: software metrics and expert's opinions. This paper proposes a framework for developing fuzzy logic-based software predication model using different set of software metrics. It aims to provide a generic set of metrics to be used for software defects prediction. The performance of the proposed Fuzzy-based models has been validated using real software projects data where Takagi-Sugeno fuzzy inference engine is used to predict software defects. Validation results are satisfactory.","PeriodicalId":175933,"journal":{"name":"2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2016.7883031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Software defect prediction is a discipline that predicts the defects proneness of future modules. Software metrics are used for this kind of predication. However, the predication metrics are associated with uncertainty, thus the metrics need to be expressed in linguistic terms to overcome ambiguity and uncertainty. Two types of knowledge are utilized as input to the prediction models: software metrics and expert's opinions. This paper proposes a framework for developing fuzzy logic-based software predication model using different set of software metrics. It aims to provide a generic set of metrics to be used for software defects prediction. The performance of the proposed Fuzzy-based models has been validated using real software projects data where Takagi-Sugeno fuzzy inference engine is used to predict software defects. Validation results are satisfactory.
利用模糊逻辑建立可理解的软件缺陷预测模型
软件缺陷预测是一门预测未来模块缺陷倾向的学科。软件度量用于这类预测。然而,预测度量与不确定性相关联,因此需要用语言术语表示度量以克服歧义和不确定性。两种类型的知识被用作预测模型的输入:软件度量和专家的意见。本文提出了一种基于模糊逻辑的软件预测模型的框架,该模型采用了不同的软件度量集。它旨在为软件缺陷预测提供一套通用的度量标准。利用Takagi-Sugeno模糊推理引擎对软件缺陷进行预测的实际软件项目数据验证了所提出的模糊模型的性能。验证结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信