A strongly typed GP-based video game player

Baozhu Jia, M. Ebner
{"title":"A strongly typed GP-based video game player","authors":"Baozhu Jia, M. Ebner","doi":"10.1109/CIG.2015.7317920","DOIUrl":null,"url":null,"abstract":"This paper attempts to evolve a general video game player, i.e. an agent which is able to learn to play many different video games with little domain knowledge. Our project uses strongly typed genetic programming as a learning algorithm. Three simple hand-crafted features are chosen to represent the game state. Each feature is a vector which consists of the position and orientation of each game object that is visible on the screen. These feature vectors are handed to the learning algorithm which will output the action the game player will take next. Game knowledge and feature vectors are acquired by processing screen grabs from the game. Three different video games are used to test the algorithm. Experiments show that our algorithm is able to find solutions to play all these three games efficiently.","PeriodicalId":244862,"journal":{"name":"2015 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2015.7317920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper attempts to evolve a general video game player, i.e. an agent which is able to learn to play many different video games with little domain knowledge. Our project uses strongly typed genetic programming as a learning algorithm. Three simple hand-crafted features are chosen to represent the game state. Each feature is a vector which consists of the position and orientation of each game object that is visible on the screen. These feature vectors are handed to the learning algorithm which will output the action the game player will take next. Game knowledge and feature vectors are acquired by processing screen grabs from the game. Three different video games are used to test the algorithm. Experiments show that our algorithm is able to find solutions to play all these three games efficiently.
基于强类型gp的电子游戏玩家
本文试图进化一个普通的电子游戏玩家,即一个能够在很少的领域知识下学习玩许多不同电子游戏的代理。我们的项目使用强类型遗传规划作为一种学习算法。选择三个简单的手工功能来代表游戏状态。每个特征都是一个矢量,由屏幕上可见的每个游戏对象的位置和方向组成。这些特征向量被传递给学习算法,它将输出游戏玩家接下来将采取的行动。游戏知识和特征向量是通过处理游戏的屏幕截图获得的。三种不同的电子游戏被用来测试这个算法。实验表明,我们的算法能够有效地找到解决这三个博弈的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信