Demystifying the constancy of the Ermakov-Lewis invariant for a time dependent oscillator

T. Padmanabhan
{"title":"Demystifying the constancy of the Ermakov-Lewis invariant for a time dependent oscillator","authors":"T. Padmanabhan","doi":"10.1142/S0217732318300057","DOIUrl":null,"url":null,"abstract":"It is well known that the time dependent harmonic oscillator possesses a conserved quantity, usually called Ermakov-Lewis invariant. I provide a simple physical interpretation of this invariant as well as a whole family of related invariants. This interpretation does not seem to have been noticed in the literature before. The procedure also allows one to tackle some key conceptual issues which arise in the study of quantum fields in external, time dependent, backgrounds like in the case of particle production in an expanding universe and Schwinger effect.","PeriodicalId":331413,"journal":{"name":"arXiv: Classical Physics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217732318300057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

It is well known that the time dependent harmonic oscillator possesses a conserved quantity, usually called Ermakov-Lewis invariant. I provide a simple physical interpretation of this invariant as well as a whole family of related invariants. This interpretation does not seem to have been noticed in the literature before. The procedure also allows one to tackle some key conceptual issues which arise in the study of quantum fields in external, time dependent, backgrounds like in the case of particle production in an expanding universe and Schwinger effect.
解时变振荡器Ermakov-Lewis不变量的常数
众所周知,时变谐振子具有一个守恒量,通常称为Ermakov-Lewis不变量。我对这个不变量提供了一个简单的物理解释,以及一系列相关的不变量。这种解释在以前的文献中似乎没有被注意到。该过程还允许人们解决一些关键的概念问题,这些问题出现在外部,时间相关的背景下的量子场的研究中,比如在膨胀的宇宙中的粒子产生和施温格效应的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信