Exponential TD Learning: A Risk-Sensitive Actor-Critic Reinforcement Learning Algorithm

Erfaun Noorani, Christos N. Mavridis, J. Baras
{"title":"Exponential TD Learning: A Risk-Sensitive Actor-Critic Reinforcement Learning Algorithm","authors":"Erfaun Noorani, Christos N. Mavridis, J. Baras","doi":"10.23919/ACC55779.2023.10156626","DOIUrl":null,"url":null,"abstract":"Incorporating risk in the decision-making process has been shown to lead to significant performance improvement in optimal control and reinforcement learning algorithms. We construct a temporal-difference risk-sensitive reinforcement learning algorithm using the exponential criteria commonly used in risk-sensitive control. The proposed method resembles an actor-critic architecture with the ‘actor’ implementing a policy gradient algorithm based on the exponential of the reward-to-go, which is estimated by the ‘critic’. The novelty of the update rule of the ‘critic’ lies in the use of a modified objective function that corresponds to the underlying multiplicative Bellman’s equation. Our results suggest that the use of the exponential criteria accelerates the learning process and reduces its variance, i.e., risk-sensitiveness can be utilized by actor-critic methods and can lead to improved performance.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"19 1 Suppl 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10156626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Incorporating risk in the decision-making process has been shown to lead to significant performance improvement in optimal control and reinforcement learning algorithms. We construct a temporal-difference risk-sensitive reinforcement learning algorithm using the exponential criteria commonly used in risk-sensitive control. The proposed method resembles an actor-critic architecture with the ‘actor’ implementing a policy gradient algorithm based on the exponential of the reward-to-go, which is estimated by the ‘critic’. The novelty of the update rule of the ‘critic’ lies in the use of a modified objective function that corresponds to the underlying multiplicative Bellman’s equation. Our results suggest that the use of the exponential criteria accelerates the learning process and reduces its variance, i.e., risk-sensitiveness can be utilized by actor-critic methods and can lead to improved performance.
指数TD学习:一种风险敏感行为者-批评家强化学习算法
在决策过程中纳入风险已被证明可以显著提高最优控制和强化学习算法的性能。我们利用风险敏感控制中常用的指数准则构造了一种时变风险敏感强化学习算法。所提出的方法类似于一个行动者-评论家体系结构,其中“行动者”实现了一个基于奖励指数的策略梯度算法,该算法由“评论家”估计。“批评家”更新规则的新颖之处在于,它使用了一个修改后的目标函数,该目标函数对应于潜在的乘法Bellman方程。我们的研究结果表明,指数标准的使用加速了学习过程并减少了其方差,即风险敏感性可以被行为者批评方法所利用,并可以提高绩效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信