Passivity, RL and Learning in Multi-Agent Games

Lacra Pavel
{"title":"Passivity, RL and Learning in Multi-Agent Games","authors":"Lacra Pavel","doi":"10.23919/ACC55779.2023.10156507","DOIUrl":null,"url":null,"abstract":"Learning algorithm behavior highly depends on the game setting. In this tutorial talk, we discuss how these dependencies can be explained, if one regards them through a passivity lens. We focus on two representative instances in reinforcement learning: payoff-based play, and Q-learning. We show how one can exploit geometric features of different classes of games, together with dissipativity/passivity properties of interconnected systems to guarantee global convergence to a Nash equilibrium. Besides simplifying the proof of convergence, one can generate algorithms that work for classes of games with less stringent assumptions, by using passivity and basic properties of interconnected systems.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10156507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Learning algorithm behavior highly depends on the game setting. In this tutorial talk, we discuss how these dependencies can be explained, if one regards them through a passivity lens. We focus on two representative instances in reinforcement learning: payoff-based play, and Q-learning. We show how one can exploit geometric features of different classes of games, together with dissipativity/passivity properties of interconnected systems to guarantee global convergence to a Nash equilibrium. Besides simplifying the proof of convergence, one can generate algorithms that work for classes of games with less stringent assumptions, by using passivity and basic properties of interconnected systems.
多智能体博弈中的被动、强化学习和学习
学习算法的行为高度依赖于游戏设置。在本教程中,我们将讨论如何解释这些依赖关系,如果人们从被动的角度来看待它们。我们关注强化学习中的两个代表性实例:基于收益的游戏和q学习。我们展示了如何利用不同类型博弈的几何特征,以及互联系统的耗散/被动特性来保证全局收敛到纳什均衡。除了简化收敛性的证明,我们还可以通过使用被动性和互联系统的基本属性,生成适用于不那么严格假设的游戏类的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信