Integration of CQCC and MFCC based Features for Replay Attack Detection

Amol Chaudhari, D. K. Shedge
{"title":"Integration of CQCC and MFCC based Features for Replay Attack Detection","authors":"Amol Chaudhari, D. K. Shedge","doi":"10.1109/ESCI53509.2022.9758391","DOIUrl":null,"url":null,"abstract":"This paper evaluates the performance of integration of CQCC and MFCC based features for automatic speaker verification (ASV) system. The detection of replay attack is challenging. For the detection of spoofing attacks, it is important to focus on front-end processing i.e., feature extraction. This paper discusses feature extraction techniques, LPC, MFCC and CQCC. The performance of baseline $\\text{CQCC}+\\text{GMM},\\ \\text{LPC}+\\text{GMM}$, and $\\text{MFCC}+\\text{GMM}$ is evaluated on ASVspoof 2017 version 2 dataset. Further, integration of CQCC and MFCC showed improved performance resulting in EER 10.18%.","PeriodicalId":436539,"journal":{"name":"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCI53509.2022.9758391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper evaluates the performance of integration of CQCC and MFCC based features for automatic speaker verification (ASV) system. The detection of replay attack is challenging. For the detection of spoofing attacks, it is important to focus on front-end processing i.e., feature extraction. This paper discusses feature extraction techniques, LPC, MFCC and CQCC. The performance of baseline $\text{CQCC}+\text{GMM},\ \text{LPC}+\text{GMM}$, and $\text{MFCC}+\text{GMM}$ is evaluated on ASVspoof 2017 version 2 dataset. Further, integration of CQCC and MFCC showed improved performance resulting in EER 10.18%.
基于CQCC和MFCC特征的重放攻击检测集成
本文对基于CQCC和MFCC的特征集成在自动说话人验证系统中的性能进行了评价。重放攻击的检测具有一定的挑战性。对于欺骗攻击的检测,重点关注前端处理,即特征提取。本文讨论了特征提取技术LPC、MFCC和CQCC。在ASVspoof 2017 version 2数据集上对基线$\text{CQCC}+\text{GMM}、\ \text{LPC}+\text{GMM}$和$\text{MFCC}+\text{GMM}$的性能进行了评估。此外,CQCC和MFCC的集成提高了性能,使EER达到10.18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信