Visualization of high-dimensional model characteristics

Marie desJardins, P. Rheingans
{"title":"Visualization of high-dimensional model characteristics","authors":"Marie desJardins, P. Rheingans","doi":"10.1145/331770.331774","DOIUrl":null,"url":null,"abstract":"Using inductive learning techniques to construct explanatory models for large, high-dimensional data sets is a useful way to discover useful information. However, these models can be difficult for users to understand. We have developed a set of visualization methods that enable a user to evaluate the quality of learned models, to compare alternative models, and identify ways in which a model might be improved We describe the visualization techniques we have explored, including methods for high-dimensional data space projection, variable/class correlation, instance mapping, and model sampling We show the results of applying these techniques to several models built from a benchmark data set of census data.","PeriodicalId":256851,"journal":{"name":"New Paradigms in Information Visualization and Manipulation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Paradigms in Information Visualization and Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/331770.331774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Using inductive learning techniques to construct explanatory models for large, high-dimensional data sets is a useful way to discover useful information. However, these models can be difficult for users to understand. We have developed a set of visualization methods that enable a user to evaluate the quality of learned models, to compare alternative models, and identify ways in which a model might be improved We describe the visualization techniques we have explored, including methods for high-dimensional data space projection, variable/class correlation, instance mapping, and model sampling We show the results of applying these techniques to several models built from a benchmark data set of census data.
高维模型特征的可视化
使用归纳学习技术为大型高维数据集构建解释模型是发现有用信息的有效方法。然而,这些模型对于用户来说可能很难理解。我们开发了一套可视化方法,使用户能够评估学习模型的质量,比较替代模型,并确定模型可以改进的方法。我们描述了我们探索的可视化技术,包括高维数据空间投影、变量/类相关、实例映射和模型抽样的方法。我们展示了将这些技术应用于从人口普查数据的基准数据集构建的几个模型的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信