Towards Embedded Heterogeneous FPGA-GPU Smart Camera Architectures for CNN Inference

Walther Carballo-Hernández, F. Berry, M. Pelcat, M. Arias-Estrada
{"title":"Towards Embedded Heterogeneous FPGA-GPU Smart Camera Architectures for CNN Inference","authors":"Walther Carballo-Hernández, F. Berry, M. Pelcat, M. Arias-Estrada","doi":"10.1145/3349801.3357136","DOIUrl":null,"url":null,"abstract":"The success of Deep Learning (DL) algorithms in computer vision tasks have created an on-going demand of dedicated hardware architectures that could keep up with the their required computation and memory complexities. This task is particularly challenging when embedded smart camera platforms have constrained resources such as power consumption, Processing Element (PE) and communication. This article describes a heterogeneous system embedding an FPGA and a GPU for executing CNN inference for computer vision applications. The built system addresses some challenges of embedded CNN such as task and data partitioning, and workload balancing. The selected heterogeneous platform embeds an Nvidia® Jetson TX2 for the CPU-GPU side and an Intel Altera® Cyclone10GX for the FPGA side interconnected by PCIe Gen2 with a MIPI-CSI camera for prototyping. This test environment will be used as a support for future work on a methodology for optimized model partitioning.","PeriodicalId":299138,"journal":{"name":"Proceedings of the 13th International Conference on Distributed Smart Cameras","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349801.3357136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The success of Deep Learning (DL) algorithms in computer vision tasks have created an on-going demand of dedicated hardware architectures that could keep up with the their required computation and memory complexities. This task is particularly challenging when embedded smart camera platforms have constrained resources such as power consumption, Processing Element (PE) and communication. This article describes a heterogeneous system embedding an FPGA and a GPU for executing CNN inference for computer vision applications. The built system addresses some challenges of embedded CNN such as task and data partitioning, and workload balancing. The selected heterogeneous platform embeds an Nvidia® Jetson TX2 for the CPU-GPU side and an Intel Altera® Cyclone10GX for the FPGA side interconnected by PCIe Gen2 with a MIPI-CSI camera for prototyping. This test environment will be used as a support for future work on a methodology for optimized model partitioning.
面向CNN推理的嵌入式异构FPGA-GPU智能摄像头架构研究
深度学习(DL)算法在计算机视觉任务中的成功创造了对专用硬件架构的持续需求,这些硬件架构可以跟上其所需的计算和内存复杂性。当嵌入式智能相机平台受到功耗、处理元件(PE)和通信等资源的限制时,这项任务尤其具有挑战性。本文描述了一个嵌入FPGA和GPU的异构系统,用于执行计算机视觉应用中的CNN推理。构建的系统解决了嵌入式CNN的一些挑战,如任务和数据分区以及工作负载平衡。所选的异构平台在CPU-GPU端嵌入了Nvidia®Jetson TX2,在FPGA端嵌入了Intel Altera®Cyclone10GX,通过PCIe Gen2与MIPI-CSI相机进行原型设计。这个测试环境将被用作对优化模型划分方法的未来工作的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信