Wasserstein Collaborative Filtering for Item Cold-start Recommendation

Yitong Meng, Xiao Yan, Weiwen Liu, Huanhuan Wu, James Cheng
{"title":"Wasserstein Collaborative Filtering for Item Cold-start Recommendation","authors":"Yitong Meng, Xiao Yan, Weiwen Liu, Huanhuan Wu, James Cheng","doi":"10.1145/3340631.3394870","DOIUrl":null,"url":null,"abstract":"Item cold-start recommendation, which predicts user preference on new items that have no user interaction records, is an important problem in recommender systems. In this paper, we model the disparity between user preferences on warm items (those having interaction record) and that on cold-start items using the Wasserstein distance. On this basis, we propose Wasserstein Collaborative Filtering (WCF), which predicts user preference on cold-start items by minimizing the Wasserstein distance under user embedding constraint. Our analysis shows that minimizing the Wasserstein distance ensures that users sharing similar tastes on warm items also have similar preferences on cold-start items. Experimental results show that WCF consistently outperform the state-of-the-art methods in recommendation quality, usually by a large margin.","PeriodicalId":417607,"journal":{"name":"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3340631.3394870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Item cold-start recommendation, which predicts user preference on new items that have no user interaction records, is an important problem in recommender systems. In this paper, we model the disparity between user preferences on warm items (those having interaction record) and that on cold-start items using the Wasserstein distance. On this basis, we propose Wasserstein Collaborative Filtering (WCF), which predicts user preference on cold-start items by minimizing the Wasserstein distance under user embedding constraint. Our analysis shows that minimizing the Wasserstein distance ensures that users sharing similar tastes on warm items also have similar preferences on cold-start items. Experimental results show that WCF consistently outperform the state-of-the-art methods in recommendation quality, usually by a large margin.
项目冷启动推荐的Wasserstein协同过滤
项目冷启动推荐是推荐系统中的一个重要问题,它预测用户对没有用户交互记录的新项目的偏好。在本文中,我们使用Wasserstein距离来模拟用户对热项目(那些有交互记录的项目)和冷启动项目的偏好差异。在此基础上,我们提出了Wasserstein协同过滤(WCF),在用户嵌入约束下,通过最小化Wasserstein距离来预测用户对冷启动项目的偏好。我们的分析表明,最小化沃瑟斯坦距离可以确保对热物品有相似品味的用户对冷启动物品也有相似的偏好。实验结果表明,WCF在推荐质量上始终优于最先进的方法,而且通常有很大的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信