Rectified Pessimistic-Optimistic Learning for Stochastic Continuum-armed Bandit with Constraints

Heng Guo, Qi Zhu, Xin Liu
{"title":"Rectified Pessimistic-Optimistic Learning for Stochastic Continuum-armed Bandit with Constraints","authors":"Heng Guo, Qi Zhu, Xin Liu","doi":"10.48550/arXiv.2211.14720","DOIUrl":null,"url":null,"abstract":"This paper studies the problem of stochastic continuum-armed bandit with constraints (SCBwC), where we optimize a black-box reward function $f(x)$ subject to a black-box constraint function $g(x)\\leq 0$ over a continuous space $\\mathcal X$. We model reward and constraint functions via Gaussian processes (GPs) and propose a Rectified Pessimistic-Optimistic Learning framework (RPOL), a penalty-based method incorporating optimistic and pessimistic GP bandit learning for reward and constraint functions, respectively. We consider the metric of cumulative constraint violation $\\sum_{t=1}^T(g(x_t))^{+},$ which is strictly stronger than the traditional long-term constraint violation $\\sum_{t=1}^Tg(x_t).$ The rectified design for the penalty update and the pessimistic learning for the constraint function in RPOL guarantee the cumulative constraint violation is minimal. RPOL can achieve sublinear regret and cumulative constraint violation for SCBwC and its variants (e.g., under delayed feedback and non-stationary environment). These theoretical results match their unconstrained counterparts. Our experiments justify RPOL outperforms several existing baseline algorithms.","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.14720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper studies the problem of stochastic continuum-armed bandit with constraints (SCBwC), where we optimize a black-box reward function $f(x)$ subject to a black-box constraint function $g(x)\leq 0$ over a continuous space $\mathcal X$. We model reward and constraint functions via Gaussian processes (GPs) and propose a Rectified Pessimistic-Optimistic Learning framework (RPOL), a penalty-based method incorporating optimistic and pessimistic GP bandit learning for reward and constraint functions, respectively. We consider the metric of cumulative constraint violation $\sum_{t=1}^T(g(x_t))^{+},$ which is strictly stronger than the traditional long-term constraint violation $\sum_{t=1}^Tg(x_t).$ The rectified design for the penalty update and the pessimistic learning for the constraint function in RPOL guarantee the cumulative constraint violation is minimal. RPOL can achieve sublinear regret and cumulative constraint violation for SCBwC and its variants (e.g., under delayed feedback and non-stationary environment). These theoretical results match their unconstrained counterparts. Our experiments justify RPOL outperforms several existing baseline algorithms.
约束下随机连续武装强盗的修正悲观乐观学习
研究带约束的随机连续武装盗匪(SCBwC)问题,在连续空间$\mathcal X$上,我们根据一个黑盒约束函数$g(x)\leq 0$对一个黑盒奖励函数$f(x)$进行优化。我们通过高斯过程(GP)对奖励和约束函数建模,并提出了一种修正的悲观-乐观学习框架(RPOL),这是一种基于惩罚的方法,分别将奖励和约束函数的乐观和悲观GP强盗学习结合起来。我们考虑累积约束违反的度量$\sum_{t=1}^T(g(x_t))^{+},$严格强于传统的长期约束违反$\sum_{t=1}^Tg(x_t).$惩罚更新的修正设计和RPOL中约束函数的悲观学习保证了累积约束违反最小。RPOL可以实现SCBwC及其变体(如延迟反馈和非平稳环境下)的亚线性后悔和累积约束违反。这些理论结果与不受约束的结果相匹配。我们的实验证明RPOL优于几种现有的基线算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信