J. Kim, Jung-Joo Kim, Kyu-Ok Lee, C. Lee, Jong-Ho Lee, Dong‐Seok Kim, Nam-Joo Kim, K. Yoo
{"title":"Effect of arsenic and phosphorus doping on polysilicon resistor noise and TCR","authors":"J. Kim, Jung-Joo Kim, Kyu-Ok Lee, C. Lee, Jong-Ho Lee, Dong‐Seok Kim, Nam-Joo Kim, K. Yoo","doi":"10.1109/SIRF.2012.6160161","DOIUrl":null,"url":null,"abstract":"Flicker (1/f) noise and TCR are compared for arsenic- and phosphorus-doped polysilicon in a 0.18 μm CMOS base technology. Resistors implanted with arsenic exhibit about 4 times higher noise than with phosphorus at the same dose and thermal budget. The TCR of arsenic-doped polysilicon is negative, near -1065 ppm/K, while that of phosphorus-doped resistors positive, about + 590 ppm/K. The mismatch of N-channel MOSFETs with arsenic-doped gates is about 40% lower than with phosphorus gates. The results are attributed to the difference in grain-size and dopant segregation. The difference in grain size is confirmed by TEM and SEM micrographs.","PeriodicalId":339730,"journal":{"name":"2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIRF.2012.6160161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Flicker (1/f) noise and TCR are compared for arsenic- and phosphorus-doped polysilicon in a 0.18 μm CMOS base technology. Resistors implanted with arsenic exhibit about 4 times higher noise than with phosphorus at the same dose and thermal budget. The TCR of arsenic-doped polysilicon is negative, near -1065 ppm/K, while that of phosphorus-doped resistors positive, about + 590 ppm/K. The mismatch of N-channel MOSFETs with arsenic-doped gates is about 40% lower than with phosphorus gates. The results are attributed to the difference in grain-size and dopant segregation. The difference in grain size is confirmed by TEM and SEM micrographs.