J. Corr, K. Thompson, Stephan Weiss, I. Proudler, J. McWhirter
{"title":"Row-shift corrected truncation of paraunitary matrices for PEVD algorithms","authors":"J. Corr, K. Thompson, Stephan Weiss, I. Proudler, J. McWhirter","doi":"10.1109/EUSIPCO.2015.7362503","DOIUrl":null,"url":null,"abstract":"In this paper, we show that the paraunitary (PU) matrices that arise from the polynomial eigenvalue decomposition (PEVD) of a parahermitian matrix are not unique. In particular, arbitrary shifts (delays) of polynomials in one row of a PU matrix yield another PU matrix that admits the same PEVD. To keep the order of such a PU matrix as low as possible, we propose a row-shift correction. Using the example of an iterative PEVD algorithm with previously proposed truncation of the PU matrix, we demonstrate that a considerable shortening of the PU order can be accomplished when using row-corrected truncation.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
In this paper, we show that the paraunitary (PU) matrices that arise from the polynomial eigenvalue decomposition (PEVD) of a parahermitian matrix are not unique. In particular, arbitrary shifts (delays) of polynomials in one row of a PU matrix yield another PU matrix that admits the same PEVD. To keep the order of such a PU matrix as low as possible, we propose a row-shift correction. Using the example of an iterative PEVD algorithm with previously proposed truncation of the PU matrix, we demonstrate that a considerable shortening of the PU order can be accomplished when using row-corrected truncation.